Release Note

Release Date : Nov. 2023.

Product Ver. : midas Gen 2024 (v1.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Index

• midas Gen

Improved Steel Design as per EC3 : 2005

- 1. Seismic Design as per EC8-1 : 2004
- 2. Improvement of "Check Interaction of Combined Resistance"
- 3. Add Interaction factor(k_{ii}) as per Annex B
- 4. Calculation of Mcr considering one-way symmetrical section and load position

Wind loads

1. Added Wind loads as per ASCE7-16 & ASCE7-22

Wind Pressure

- 1. Added Area/Beam/Nodal Wind Pressure in Wind Pressure feature
- 2. Beam Wind Pressure
- 3. Area Wind Pressure
- 4. Nodal Wind Pressure
- 5. Velocity Pressure
- 6. Improvement of Wind Pressure function

Rebar Detail Table

1. Support the Rebar detail table according to design provisions

Convenience function added

- 1. Angle information in Query Dialog
- 2. Objects selection by load information
- 3. Improvement of Elastic & General Link Table

↓ Go to FREE TRIAL

- 1. Torsional Irregularity & Weight Irregularity
- 2. Stiffness Irregularity
- 3. Capacity Irregularity

Gen-Revit 2024 Linker

Interface for Gen - IDEA Statica Connection

Added New Sections

ETC.

- 1. Application of "fs" calculated by service load combinations
- 2. Improvement of Cyclic Shear Resistance table
- 3. Generation of Column Fiber Model

• Design +

Add Design as per ACI318(M)-19

Improvement on Combined Footing as per ACI318-14 and upper version

Batch Beam & Column Design

↓ Go to FREE TRIAL

↓ INSTALLER DOWNLOAD

1. Seismic Design as per EC8-1 : 2004 (Continuous)

Steel Design Code X
Design Code : Eurocode3:05 🗸
National Annex : Recommended 🗸 🗸
 All Beams/Girders are Laterally Braced Check Beam/Column Deflection Apply Special Provisions for Spiceria Design 4
Apply Special Provisions for Seismic Design Behaviour and Overstrength Factors
$q = 2$ $y_0 = 1.25$
Steel Frame Type 🛛 Moment frames 🔍
Non-seismic Member None 🗸
Biaxial moments for buckling resistance
 Biaxial moments at the same location
⊖ Maximum moments along the member
Consider as linear summation for class 1,2 (Eq.6,2)
Method for interaction factor, kij
O By Code ○ Annex A ○ Annex B
Point of load application for Mcr
● Top ○ Shear Center ○ Bottom
OK Close

• Check "Ductility Class" γ according to Table 6.3

 \rightarrow Evaluate the ductility class of the section required by the seismic provisions according to the inputted behavior factor(q)

- Column's Seismic Design under "Moment Frame" system
 - 1. Calculation of member design forces

$N_{\rm Ed} = N_{\rm Ed,G} + 1, 1\gamma_{\rm ov} \Omega N_{\rm Ed,E}$	$\Omega_{\rm i} = M_{\rm pl,Rd,i}/M_{\rm Ed,i}$: Apply Min. $\boldsymbol{\Omega}$ at all Joint beams
$M_{\rm Ed} = M_{\rm Ed,G} + 1, 1\gamma_{\rm ov} \Omega M_{\rm Ed,E}$	$\gamma_{\rm ov} = 1,25$: Apply input value in dialog box
$V_{\rm Ed} = V_{\rm Ed,G} + 1, l\gamma_{\rm ov} \mathcal{\Omega} V_{\rm Ed,E}$		

2. Shear design

1. Seismic Design as per EC8-1 : 2004 (Continuous)

Steel Design Code X Design Code : Eurocode3:05 National Annex : Recommended \sim All Beams/Girders are Laterally Braced Check Beam/Column Deflection Apply Special Provisions for Seismic Design Behaviour and Overstrength Factors q = 2 $y_{-0}v = 1.25$ Moment frames Steel Frame Type Non-seismic Member None \sim Biaxial moments for buckling resistance Biaxial moments at the same location O Maximum moments along the member Consider as linear summation for class 1,2 (Eq.6,2) Method for interaction factor, kij O By Code O Annex A O Annex B _____ Point of load application for Mcr O Top ○ Shear Center ○ Bottom 0K Close

Beam Design under "Moment Frame" system
 → Check the conditions on the right for the beam end.

Ductility Design (Strong column – Week beam)

under "Moment Frame" system

- → Check "Steel Strong Column-Weak Beam Ratio" in Table result.
- → Steel Design > Steel Strong Column-Weak Beam Ratio > Steel Strong Column-Weak Beam Ratio Table

$$\frac{M_{\rm Ed}}{M_{\rm pl,Rd}} \le 1,0$$

$$\frac{M_{\rm Ed}}{N_{\rm pl,Rd}} \le 0,15$$

$$\frac{V_{\rm Ed}}{V_{\rm pl,Rd}} \le 0,5 \qquad V_{\rm Ed} = V_{\rm Ed,G} + V_{\rm Ed,M}$$

$$V_{\rm Ed,M} = (M_{\rm pl,Rd,A} + M_{\rm pl,Rd,B})/L$$
(3) For sections belonging to cross-sectional class 3, expressions (6.2) to (6.5).

(3) For sections belonging to cross-sectional class 3, expressions (6.2) to (6.5) should be checked replacing $N_{pl, Rd}$, $M_{pl, Rd}$, $V_{pl, Rd}$ with $N_{cl, Rd}$, $M_{cl, Rd}$, $V_{cl, Rd}$.

Node	Column Local Axis	LCB	Column Strength (kN-m)	Beam Strength (kN·m)	Ratio	Remark
Acceptance	Limit for SCWB C/B	Flexural Cap	acity Ratio: 1.3	р.) С		
Input Accept	ance Limit Value an	d Press 'App	ly' button to change value		1.30	Apply
2	Local y	sLCB2	1469.1003	623.0279	2.36	ОК
2	Local z	sLCB2	2884,1233	2264.1604	1.27	N/A
3	Local y	sLCB2	1469.1003	0.0000	99.99	-
3	Local z	sLCB2	2884,1233	1703.4353	1.69	OK
4	Local y	sLCB2	1469.1003	0.0000	99.99	-
4	Local z	sLCB2	2884,1233	1703.4353	1.69	OK
5	Local y	sLCB2	0.0000	623.0279	0.00	CHK

1. Seismic Design as per EC8-1 : 2004 (Continuous)

Steel Design Code		×
Design Code :	Eurocode3:05 🗸	
National Annex :	Recommended v	
All Beams/Gird Check Beam/(ders are Laterally Braced Column Deflection	
Apply Special	Provisions for Seismic Desig	n
Behaviour and Ov	verstrength Factors	
q = 2	y_ov = 1,25	
Steel Frame Type	e Braced frames	\sim
Non-seismic Mer	mber None 🗸 🗸	
-Biaxial moments	for buckling resistance	
O Biaxial momer	nts at the same location	
O Maximum mor	ments along the member	
Consider as lir (Eq.6,2)	near summation for class 1,2	
Pu Codo	Спонтасцог, кіј	
Point of load appli	lication for Mcr	-i
О Тор О) Shear Center 🛛 Bottom	!
į.	OK Close	

- Beam & Column Design under "Braced Frame"
 - \rightarrow Design to have Min. resistance for an axial force by reviewing according to Equation 6.12 below.
 - \rightarrow Only the concentrated braced frame type is supported.

Beams and columns with axial forces sho	ould meet the following minimum
sistance requirement:	
$N_{pl,Rd}(M_{Ed}) \geq N_{Ed,G} + 1.1 \gamma_{ov} \Omega N_{Ed,E}$	(6.12)
. Npl,Rd = Afy / gamma_M0 (Class 1&2&3)	
)) Beams and columns with axial forces sho sistance requirement: N _{pl,Rd} (M _{Ed}) ≥ N _{Ed,G} + 1.1 γ _{ov} ΩN _{Ed,E} . Npl,Rd = Afy / gamma_M0 (Class 1&2&3)

- Non-seismic member
 - \rightarrow Groups that do not apply a seismic design can be set.

2. Improvement of "Check Interaction of Combined Resistance"

Until the previous version, the combination ratio based on the EC3:05 was checked by using Max (Rmax1, Rmax2).
 But, "Rmax1" is just a 'conservative approach' and basically checking by "Rmax2" can get more precise results.
 Therefore, the options to control the design as shown below was added.

When checking Interaction Ratio of Bending & Axial force

1. Check on : apply Max(Rmax1,Rmax2) (the same method as the previous version)

2. Check off : apply only Rmax2 (Default method)

In case considering "Lateral & Lateral-torsion"

Check on : Rmax=Max[(Rmax1,Rmax2),Max(Rmax_LT1,Rmax_LT2)] (the same method as the previous version)
 Check off : Rmax=Max[Rmax2,Max(Rmax LT1,Rmax LT2)] (Default method)

Rmax1 : EC3:05 6.2.1.(Eq. 6,2)	$\left[\frac{M_{y,Ed}}{M_{N,y,Rd}}\right]^{\alpha} + \left[\frac{M_{z,Ed}}{M_{N,z,Rd}}\right]^{\beta} \leq 1$	for Class 1&2 sections I and H section: α=2; β=5n but β≥1
Rmax2:EC3:05 6.2.9 (Eq. 6.31~6.41)	$\frac{N_{\text{Ed}}}{N_{\text{Rd}}} + \frac{M_{\text{y,Ed}}}{M_{\text{y,Rd}}} + \frac{M_{\text{z,Ed}}}{M_{\text{z,Rd}}} \leq 1$	for Class 1,2,3 & 4 sections

3. Add Interaction factor(k_{ii}) as per Annex B

× Steel Design Code Design Code : Eurocode3:05 National Annex : Recommended \sim All Beams/Girders are Laterally Braced Check Beam/Column Deflection Apply Special Provisions for Seismic Design Biaxial moments for buckling resistance Biaxial moments at the same location O Maximum moments along the member Consider as linear summation for class 1,2 (Eq.6,2) Method for interaction factor, kij O By Code O Annex A O Annex B ------Point of load application for Mcr O Shear Center O Top OBottom 0K Close

The option on how to apply interaction factor (kij) was added. In the previous version, only Annex A (Table A.1) was considered, but it has been improved to consider Annex B (Table B.1).

- "By Code": It is automatically applied according to the recommended method for each National Annex.
 - → In case of "Recommended", "Sweden", "Sweden(2019)", "Singapore", Annex A is applied.

Annex A (Basic Equation)

Annex B (General Equation)

Table A.1: Interaction factors k_{ii} (6.3.3(4)) Design assumptions Interaction factors elastic cross-sectional properties plastic cross-sectional properties class 3, class 4 class 1, class 2 μ_v $C_{mv}C_{mLT}$ - $C_{my}C_{mLT}$ N Ed N_{Ed} C_{vv} k_{vv} N N_{cr.y} μ., 1 Wz -0.6 N_{Ed} C_{yz} N Ed k_{yz} W. N N $-0,6\sqrt{\frac{w_z}{w_z}}$ μ, $C_{my}C_{ml,T}$ -C_{mv}C_{mLT} N_{Ed} N_{Ed} C_{zy} k_{zy} N_{sty} N μ, \mathbf{N}_{Ed} NEd Czz k22 N

Table B.1: Interaction factors k_{ij} for members not susceptible to torsional deformations

Internation	Tunna	Design a:	ssumptions
factors	sections	elastic cross-sectional properties class 3, class 4	plastic cross-sectional properties class 1, class 2
k _{yy}	I-sections RHS-sections	$\begin{split} & C_{\text{my}}\!\left(1\!+\!0,\!6\overline{\lambda}_{y}\frac{N_{\text{Ed}}}{\chi_{y}N_{\text{Rk}}/\gamma_{\text{MI}}}\right) \\ & \leq C_{\text{my}}\!\left(1\!+\!0,\!6\frac{N_{\text{Ed}}}{\chi_{y}N_{\text{Rk}}/\gamma_{\text{MI}}}\right) \end{split}$	$\begin{split} & C_{my} \Biggl(1 + \Bigl(\overline{\lambda}_{y} - 0, 2 \Bigr) \frac{N_{Ed}}{\chi_{y} N_{Rk} / \gamma_{MT}} \Biggr) \\ & \leq C_{my} \Biggl(1 + 0.8 \frac{N_{Ed}}{\chi_{y} N_{Rk} / \gamma_{MT}} \Biggr) \end{split}$
\mathbf{k}_{yz}	I-sections RHS-sections	k ₂₂	0,6 k ₂₂
k _{zy}	I-sections RHS-sections	0,8 k _{yy}	0,6 k _{yy}
Ŀ	I-sections	$C_{mz} \left(1 + 0.6 \overline{\lambda}_z \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}}\right)$	$\begin{split} & C_{\text{mz}} \Bigg(1 + \Bigl(2\overline{\lambda}_z - 0, 6 \Bigr) \frac{N_{\text{Ed}}}{\chi_z N_{\text{Rk}} / \gamma_{\text{MI}}} \Bigg) \\ & \leq C_{\text{mz}} \Bigg(1 + 1, 4 \frac{N_{\text{Ed}}}{\chi_z N_{\text{Rk}} / \gamma_{\text{MI}}} \Bigg) \end{split}$
NZZ	RHS-sections	$\leq C_{\text{mz}} \Biggl(1 + 0.6 \frac{N_{\text{Fd}}}{\chi_z N_{\text{Rk}} / \gamma_{\text{M1}}} \Biggr)$	$\begin{split} & C_{mz} \Bigg(1 + \big(\overline{\lambda}_z - 0.2 \big) \frac{N_{Ed}}{\chi_z N_{RL} / \gamma_{M1}} \Bigg) \\ & \leq C_{mz} \Bigg(1 + 0.8 \frac{N_{Ed}}{\chi_z N_{RL} / \gamma_{M1}} \Bigg) \end{split}$

4. Calculation of Mcr considering one-way symmetrical section and load position (only I-shape section)

Steel Design Code			×	When calculating
Design Code :	Eurocode3:05	~		improved.
National Annex	: Recommende	ed 🗸		Basic Equati
All Beams/G	irders are Latera	ally Braced		(3) When $k = k_w =$
Apply Special Biaxial moment	al Provisions for a solution of the solution o	Seismic Desigr sistance		$M_{cr} = C_1 \frac{\pi^2 E}{L^2}$
O Biaxial mom O Maximum m	ents at the same ioments along th	e location e member		
Consider as (Eq.6,2)	linear summatio	n for class 1,2		 In the Steel Des
O By Code	Annex A	🔿 Annex B		Individual settin
Point of load ap	plication for Mcr			application for I
💿 Тор	🔿 Shear Center	⊖ Bottorn		
	- AK			✓ User can inp
	UK	Close		section, the
				✓ The top direct

• When calculating Mcr, applying a general equation that can consider an axially symmetrical section and loading position has been improved.

- In the Steel Design dialog box, a batch setting of the loading point is supported. (for only Beam)
- Individual settings of loading position is supported in "Design Parameter>Point of load application for Mcr" function.
 - ✓ User can input " z_g " value. However, when inputting the value outside the cross-section, the value up to the edge of the cross-section is applied during design.
 - ✓ The top direction has a (+) sign.

Wind loads

1. Added Wind loads as per ASCE7-16 & ASCE7-22

Key Reflections

• ASCE 7 – 16 : "K_e"(Ground Elevation adjustment Factor) was added to "qz" equation.

(26.10-1.si)

• ASCE 7 – 22

1. q_z and p equations : "K_d" was added to wind pressure(p) equation.

2. Modified Table 26.10-1 "K $_{\rm h}$ and K $_{\rm z}$ (Velocity pressure exposure Coefficients)" was reflected.

1. Added Area/Beam/Nodal Wind Pressure in Wind Pressure feature

Velocity Pressure: Creates a Velocity Pressure function according to the code.

Beam Wind Pressure: Calculate the projected area of the selected beam element and input the wind load in the form of 'Element Beam Load.' The load applied at this time is applied as the projected area of the 1D element section, considering the loading angle.

Area Wind Pressure: Enter the wind load for a space frame structure with an arbitrary shape. If you select the 1D elements that make up the closed area, the wind load of the area is applied to each node as a nodal load.

Nodal Wind Pressure: Calculate the wind load acting on an arbitrary shape structure that is not included in the structural analysis model and apply it to the selected node.

2. Beam Wind Pressure

• Calculate the projected area of the selected beam element and input the wind load in the form of 'Element Beam Load.' The load applied at this time is applied as the projected area of the 1D element section, considering the loading angle.

Wind Pressure	Load Case Name : Select the Load case.
Beam Wind Pressure V	To enter, modify or delete additional load conditions, use the "" button.
Load Case Name : WL 🔍	Direction : Select the direction of wind load action.
Direction : X-Y ~	* X-Y : The load is applied in the horizontal direction of the structure (parallel to the X-Y plane of the global coordinate system).
Angle : 0 🔶 [deg]	Angle : Enter the wind load input angle about the global coordinate system X-axis.
Scale Factor :	
Wind Load Code :	Scale factor : Enter the increase/ decrease coefficient of wind load.
Velesitu Bressure Name :	Wind Load Code : Select the standard for a calculation of wind pressure
Wind eign	✓ ASCE7 (2022)
wind_sign 🗸	✓ ASCE7 (2016)
Ground Elevation Factor Ke: 1,0000	✓ KDS(41-12:2022)
Directional Factor Kd : 0,8500	✓ KDS(41-10-15:2019)
Gust Factor	✓ KBC (2010)
	✓ China (GB50009-2012)
	✓ China (GB50009-2001)
Internal Gpi : 0,0000	
Coefficient	Velocity Pressure Name : Select the function for a velocity pressure function.
	To add, modify or delete a velocity pressures, use the "" button.
Chimpeus, Tanks, and similary	Gust Factor : Input a external and internal gust factor
	To calculate the gust factor automatically, use the ""button.
External Cf : 0,8000	
Internal Cf : 0,0000	Coefficient
	[Auto.Calculate Coefficients] : Check on it to calculate the coefficients automatically and Select the structure type. To calculate the external and internal Cf automatically, use the "" button.
wind Pressure Profile	
Apply Close	• Wind Pressure Profile : Show the wind pressure by the height from in a table and graph format.

3. Area Wind Pressure

Enter the wind load for a space frame structure with an arbitrary shape. If you select the 1D elements that make up the closed area, the wind load of the area is applied to each node as a

nodal load.

4. Nodal Wind Pressure

• Calculate the wind load acting on an arbitrary shape structure that is not included in the structural analysis model and apply it to the selected node.

- Enter the centroid coordinate of the structure which the wind load is applied.

5. Velocity Pressure

Creates a Velocity Pressure function according to the code.

	ði ∓						Gen 2023	- [D:₩06	_release work#00_0	Gen₩2023년5	드 개발
View Structure Static Loads Dyna Temp./Prestress Const Moving Load Heat Lc Velocity Pressure	Node/Element mic Loads Sett truction Stage Loa of Hydration bad Type	Properties tlement/Misc. d Tables Sta	Boundary atic Load U Cases Co Create Loa	Load Load mbinations d Cases	Analysis Self Wei Nodal Lo Specified Stri Stri Strive	Results ght W ads M I Displ. ucture Load	Pushover Nodal Body Fo Loads to Masse s / Masses X	Design rce 即 es T 即	Seismic Perform Wind Loads Wind Pressure * Velocity Pressure Wind Pressure Fu Area Wind Pressu	nance Qu Earth Pressu unction ure	ery Jre *
Velocity Pressure Name Wind_sign	Wind Load Code ASCE7(2022)		Add odify elete	Velocity F Wind Loa Wind Loa Basic V Exposu Mean F I Inclu Topogr: Kzt :	Pressure Name : d Code : ad Parameters Vind Speed : re Category : loof Height : de Topographic E aphic Factor at Bu Auto C	Wind_sign ASCE7(202 85 B 3 Iffects Idding Ground 1 alculate	2) v v v v v v v v v v v v v v v v v v v	目目	Function Wind Press	ressure	
				Topographi Topogra Hill St Buildin Hill He Hill Le Crest	ic Effects hape : hg Location : hight(H) : hgth(Lh) : -Building Distance	2 U 0 (x) : 0	-D Ridge or v pwind v m m OK Can	×			

Code to support the wind load

Select the standard for a calculation of wind pressure

- ASCE7 (2022)
- ASCE7 (2016)
- KDS(41-12:2022)
- KDS(41-10-15:2019)
- KBC (2016)
- KBC (2009)
- China (GB50009-2012)
- China (GB50009-2001)

6. Improvement of Wind Pressure function

• Separation of Function and User's Input options

E.m.	ncaon		OUse	r's Input
Func Func	tion tion Name :	Ea Pi		
Coor	dinata Sueta	- <u></u>	Ţ	Culindrical
0001	unale byster			Cymruncar
Equa	ition :	(-9,12	+(Z*Z*Z)*0,(013)*cos(TH)
		(Exan	nple∶0,7*Z*	Z, cos(TH)+R)
)esc	ription :			
Fable	e Show Optio	n		
Fixed	I Axis :	R, TH	~	Unit : m, [de
z	Start: 0	End :	9 1	ncrement: 1
au n	oordinatee	в	6	TH 180
Fix C	Coordinates	R	6	TH 180
Fix C	coordinates	R	6	TH 180 Calculate
Fix C	R (m)	TH ([deg])	6 Z (m)	TH 180 Calculate Wind Pressure (kN/m²)
Fix C	R (m)	R TH ([deg]) 180	6 Z (m) 0	TH 180 Calculate Wind Pressure (kN/m²) 9.12
1 2	R (m) 6	R TH ([deg]) 180 180	6 Z (m) 1	TH 180 Calculate Wind Pressure (kN/m²) 9.12 9.107
1 2 3	R (m) 6 6 6	R TH ([deg]) 180 180 180	E (m) 0 1 2 2	TH 180 Calculate Wind Pressure (kN/m²) 9.12 9.107 9.016
1 2 3 4	R (m) 6 6 6 6 6	R TH ([deg]) 180 180 180 180 180	6 (m) 0 1 2 3	TH 180 Calculate Wind Pressure (kN/m²) 9.12 9.107 9.016 8.769
1 2 3 4 5	R (m) 6 6 6 6 6 6 6 6 6	R ([deg]) 180 180 180 180 180	6 (m) 0 1 2 3 4 4 5	TH 180 Calculate Wind Pressure (kN/m ²) 9.12 9.107 9.016 8.769 8.288 7.495
1 2 3 4 5 6 7	R (m) 6 6 6 6 6 6 6 6 6	R TH ([deg]) 180 180 180 180 180 180 180	6 Z (m) 0 1 2 3 4 5 6	TH 180 Calculate Wind Pressure (kN/m²) 9.12 9.107 9.016 8.769 8.288 7.495 6.312
Fix C	R (m) 6 6 6 6 6 6 6 6 6 6 6	R TH ([deg]) 180 180 180 180 180 180 180 180	6 (m) 0 1 2 3 4 4 5 6 7	TH 180 Calculate Wind Pressure (kN/m²) 9.12 9.107 9.016 8.768 8.268 8.268 7.495 6.312 4.661
Fix C 1 2 3 4 5 6 7 8 9	R (m) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	R TH ([deg]) 180 180 180 180 180 180 180 180 180 180	6 (m) 0 1 2 3 3 4 5 6 6 7 7 8	TH 180 Calculate Wind Pressure (kN/m ²) 9.12 9.107 9.016 8.768 8.288 7.495 6.312 4.661 2.464

Function → Automatically applied according to Equation

Funct Funct Coorr Equa Desc	ion tion Name : dinate Syste tion :	Eq Pi	•	'
Funct Coord Equa Desc	tion Name : dinate Syste tion :	Eq Pi m :		
Coord Equa Desc	dinate Syste tion :	m:		
Equa Desc	tion :			Cylindrical
Desc		(-9,12	+(Z*Z*Z)*(0.013)*cos(TH)
Desc		(Exar	mple : 0,7*;	Z*Z, cos(TH)+R)
	ription :			
Table	Show Optio	n		
Fixed	Axis :	B, TH	~	Unit : m, [de
z	Start: 0	End :	9	Increment : 1
Fix C	nordinates	В	6	TH 180
			<u> </u>	Calculate
				Guicalate
	R (m)	TH ([deg])	Z (m)	Wind Pressure (kN/m²)
1	R (m) 6	TH ([deg]) 180	Z (m)	Wind Pressure (kN/m²) 0 9.12
1 2	R (m) 6 6	TH ([deg]) 180 180	Z (m)	Wind Pressure (kN/m²) 0 9.12 1 9.107
1 2 3	R (m) 6 6 6	TH ([deg]) 180 180 180	Z (m)	Wind Pressure (kN/m²) 0 9.12 1 9.107 2 9.016 0 0.12
1 2 3 4	R (m) 6 6 6 6 6	TH ([deg]) 180 180 180 180 180	Z (m)	Wind Pressure (kN/m²) 0 9.12 1 9.107 2 9.016 3 8.769 4 9.22
1 2 3 4 5 6	R (m) 6 6 6 6 6 6	TH ([deg]) 180 180 180 180 180 180 180	Z (m)	Wind Pressure (kN/m²) 0 9.12 1 9.107 2 9.016 3 8.769 4 8.288 5 7.495
1 2 3 4 5 6 7	R (m) 6 6 6 6 6 6 6 6 6	TH ([deg]) 180 180 180 180 180 180 180	Z (m)	Wind Pressure (kN/m²) 0 9.12 1 9.107 2 9.016 3 8.769 4 8.288 5 7.495 5 6.312
1 2 3 4 5 6 7 8	R (m) 6 6 6 6 6 6 6 6	TH ([deg]) 180 180 180 180 180 180 180 180 180	Z (m)	Wind Pressure (kN/m²) 0 9.12 1 9.107 2 9.016 3 8.769 4 8.288 5 7.495 8 6.312 7 4.661
1 2 3 4 5 6 7 8 9	R (m) 6 6 6 6 6 6 6 6 6 6 6	TH ([deg]) 180 180 180 180 180 180 180 180 180 180	Z (m)	Wind Pressure (kN/m²) 0 9.12 1 9.107 2 9.016 3 8.769 4 8.288 5 7.495 6 3.12 7 4.661 8 2.464

[Note]

When inputting wind pressure in the normal direction for a cylindrical shape, the input shape differs depending on the option of the function, as shown below. This is because "User's input" uses the entered value, so the input type shown on the left cannot be implemented.

User's Input \rightarrow You can modify "Wind Pressure" column in the table or paste an external value.

Finally, Input the loads to elements using the value entered in "Wind Pressure" column

* User's Input is allowed Since the calculation function supported by Equation is limited.

Rebar Detail Table

1. Support the Rebar detail table according to design provisions

• It is supported only under "Code Checking" and outputs the checking result for the Min./Max. area of rebars or spacing between rebars required by the design code.

Applied Code	ACIDIOM 10		hacking Do	ult Dial				dded "R	ebar De	tail″ op	tion					
 ACI 318(M) 14 & 19 EC2 : 2004 KDS 2022 NSR-10 NSCP 2015 NTC-DCEC(2017) 	Code : AC Sorted by Sort F	I318M-19 (O Wall ID O Wall ID Result,	Method 1) + Story (WID)	Unit Results	kN , ⊖Stren OReba	mm igth ir Detail	• •	mary Sor WID 🔿	ting Optio Wall Mar	n k						
Column	MEMB	Sectio	n fo	: 1	ý CH		Main I	Rebar (%)				Hoop)		
[Error Symbol in CHK column]	SECT	Bc	Hc Heig	ght fy	/s	ρ.	max p	use	p.min	POS	Avy.use	Avy.mi	Avz.use	Avz.min	s.max	s.use
M : N.G. of Main rebar ratio	35	rett0.4	4 0.030	000 0.50	0000 M	3	000	142	1 000	End	398.10	-	398.10	87	320.00	100.00
V : N.G. for Hoop	1	400.0 4	00.0 3000	0.0 0.40	0000					Mid	398.10	-	398.10	-	320.00	100.00
J : N.G. for Hoop in Joint	МЕМВ	Section	fc			M	ain Rebar (To	2)			Main Re	bar (Bottom)		1	Stirrup	
Beam	SECT SEL	Bc Hc	fy PO	S CHK	o max	ouse	o min	-,		o max	o use (min			Canap	
[Error Symbol in CHK column]	Span	bf hf	fys		(%)	(%)	(%)	s.max	s.use	(%)	(%)	(%) S.	nax s.use	Av.use A	v.min s.ma	ax s.use
• P : N.G. for rebar with Positive Moment	0	600*600	0.03000	ОК	1.895	0.390	0.280	185.45	157.67	1.895	0.390	0.223 18	5.45 157.67	1.3090 0	.5250 268.2	25 120.00
 N : N.G. for rebar with Negative Moment V : N.G. for Stirrup 	5000.0	600.0 600.0 0.000 0.000	0.50000 M	OK	1.895	0.390	0.074	185.45	157.67	1.895	0.390	0.200 18	5.45 157.67	0.8727 0	.5250 268.2 5250 268.2	25 180.00
 T : N.G. for Sidebar with Torsion 	3000.0		0.40000 3	UN	1.000	0.000	0.200	103.40	101.01	1.000	0.550		101.01	1.5050	.02.00	120.00
Wall	WID	Wall	Mark	fc	fy	СЦК			V-R	lebar				H-R	ebar	
[Error Symbol in CHK_column]	Story	Lw	HTw	hw	fys	CIT	p.max(%)	p.use	(%) p.n	nin(%)	s.max	s.use	p.use(%)	p.min(%)	s.max	s.use
• V : N.G. for Vertical rebar	13	V	V3	0.03000	0.50000	ок	4.000	0.59	5 0	250	450.00	100.00	0.345	0.250	450.00	70,000

• B : N.G. for Hoop in Boundary area

Added Convenience functions

1. Angle information in Query Dialog

• In Query Dialog(Node), Provides angle information when clicking three or more nodes

Added Convenience functions

2. Objects selection by load information

• Select elements or nodes to which load is assigned → When double-clicking a loads in the work tree, the objects to which the load is assigned is selected.

The target load is as follows.

- Nodal load
- Beam Load (Element beam load, Typical Beam load)
- Pressure load
- Specified Displacements of supports
- Temperatures (Element Temperatures, Nodal Temperatures)

Added Convenience functions

- 3. Improvement of Elastic & General Link Table
 - Link result output support by Boundary Group

			Loadcase/Combination
All None	Inverse	Prev	Self(ST)
io. 🗸 1			
Select Type			WX(ST)
Boundary Group	~	Add	RX(RS)
Default		Dalata	SLCB1(CBS)
Bndr Group 1		Delete	SLCB2(CBS)
Bridr Group 2		Replace	sLCB4(CBS)

Step 01 : Select "Boundary Group".
Step 02 : Select Target Group Name.
Step 03 : Click "Replace".
Step 04 ; Select target load cases or load combinations
Step 05 : Click "OK"

No	Node1	Node2	Туре	RIGID	SDx (kN/m)	Distance Ratio SDy	Distance Ratio SDz	Group		No.	Load	Node	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN·m)	Moment-y (kN·m)	Moment-z (kN·m)
1	60	26	GE	000000	10000.0000	0.50	0.50	Bndr Group 1										
2	61	28	GE	000000	10000.0000	0.50	0.50	Bndr Group 2] 1	sLCB1	60	-5.38	0.00	0.00	0.00	0.00	0.00
3	63	30	GE	000000	10000.0000	0.50	0.50	Bndr Group 3		1	sLCB1	26	-5.38	0.00	0.00	0.00	0.00	0.00
4	65	32	GE	000000	10000 0000	0.50	0.50	Bndr Group 3	1									

[Elastic Link Table]

[Output results for the selected group]

X

1. Torsional Irregularity & Weight Irregularity

• Results > Results Tables > Story> Torsional, Weight , Stiffness, and Capacity Irregularity Check

				Average Value o	of Extreme Points	Maxim	um Value	
Load Case	Story	(m)	(m)	Story Drift (m)	1.2*Story Drift (m)	Node	Story Drift (m)	Remark
Rx(RS)	9F	32.50	4.00	0.0085	0.0102	161	0.0085	Regular
Rx(RS)	8F	28.50	4.00	0.0123	0.0148	156	0.0123	Regular
Rx(RS)	7F	24.50	4.00	0.0129	0.0154	121	0.0129	Regular
Rx(RS)	6F	20.50	4.00	0.0134	0.0160	116	0.0134	Regular
Rx(RS)	5F	16.50	4.00	0.0149	0.0178	96	0.0149	Regular
Rx(RS)	4F	12.50	4.00	0.0133	0.0159	61	0.0133	Regular
Rx(RS)	3F	8.50	4.00	0.0119	0.0143	56	0.0119	Regular
Rx(RS)	2F	4.50	4.00	0.0119	0.0143	21	0.0119	Regular
Rx(RS)	1F	0.00	4.50	0.0103	0.0123	16	0.0103	Regular
Ry(RS)	9F	32.50	4.00	0.0063	0.0076	180	0.0063	Regular
Ry(RS)	8F	28.50	4.00	0.0066	0.0080	160	0.0066	Regular
Ry(RS)	7F	24.50	4.00	0.0066	0.0080	140	0.0066	Regular
Ry(RS)	6F	20.50	4.00	0.0065	0.0078	120	0.0065	Regular
Ry(RS)	5F	16.50	4.00	0.0062	0.0075	100	0.0062	Regular
Ry(RS)	4F	12.50	4.00	0.0055	0.0066	80	0.0055	Regular
Ry(RS)	3F	8.50	4.00	0.0044	0.0053	60	0.0044	Regular
Ry(RS)	2F	4.50	4.00	0.0034	0.0041	40	0.0034	Regular
Ry(RS)	1F	0.00	4.50	0.0021	0.0025	20	0.0021	Regular

Torsional Irregularity

Weight Irregularity Check

				01	Adjacent Story		
Load Case	Story	(m)	(m)	(kN)	1.2M(Lower) (kN)	Ratio	Remark
Rx(RS)	Roof	36.50	0.00	4641.229	7874.492	0.000	-
Rx(RS)	9F	32.50	4.00	6562.077	7988.095	0.821	Regula
Rx(RS)	8F	28.50	4.00	6656.746	8740.032	0.762	Regula
Rx(RS)	7F	24.50	4.00	7283.360	8740.032	0.833	Regula
Rx(RS)	6F	20.50	4.00	7283.360	8832.198	0.825	Regula
Rx(RS)	5F	16.50	4.00	7360.165	9731.187	0.756	Regula
Rx(RS)	4F	12.50	4.00	8109.323	9803.678	0.827	Regula
Rx(RS)	3F	8.50	4.00	8169.732	9908.531	0.825	Regula
Rx(RS)	2F	4.50	4.00	8257.109	0.000	0.000	Regula
Rx(RS)	1F	0.00	4.50	786.395	0.000	0.000	-

✓ Note

1. Torsional Irregularity Check

According to Section 5.1. 12) in NTCS2020,

"Story Drift of Maximum Value" divided by "1.2*Story Drift of Average Value of Extreme Points." If it exceeds 1.0, "Irregular" is printed. If it is less than 1.0, 'Regular' is printed.

2. Weight Irregularity Check

According to Section 5.1. 7) in NTCS2020,

" Story Weight Ratio", Story Weight divided by 1.2*Story Weight of adjacent lower story, If it exceeds 1.0, "Irregular" is printed. If it is less than 1.0, 'Regular' is printed.

2. Stiffness Irregularity

• Results > Results Tables > Story> Torsional, Weight , Stiffness, and Capacity Irregularity Check

Stiffness Irregularity Check

		14102104	0	01	Story Shear	01	Lower Sto	ory Stiffness	
Load Case	Story	(m)	(m)	(m)	Force (kN)	Stiffness	1.2K (Lower)	0.8K (Lower)	Remark
Rx(RS)	9F	32.50	4.00	0.0085	1739.04	471.65	389.03	259.35	Irregular
Rx(RS)	8F	28.50	4.00	0.0123	3825.51	324.19	373.23	248.82	Regular
Rx(RS)	7F	24.50	4.00	0.0129	5597.45	311.03	358.98	239.32	Regular
Rx(RS)	6F	20.50	4.00	0.0134	7239.69	299.15	323.01	215.34	Regular
Rx(RS)	5F	16.50	4.00	0.0149	8611.13	269.17	361.70	241.14	Regular
Rx(RS)	4F	12.50	4.00	0.0133	9695.44	301.42	401.94	267.96	Regular
Rx(RS)	3F	8.50	4.00	0.0119	10601.04	334.95	401.83	267.89	Regular
Rx(RS)	2F	4.50	4.00	0.0119	11235.88	334.86	526.35	350.90	Irregular
Rx(RS)	1F	0.00	4.50	0.0103	11556.30	438.63	0.00	0.00	-

✓ Note

3. Stiffness Irregularity(Soft Story) Check

According to Section 5.1. 11) in NTCS2020,

When the story stiffness of a particular story is greater than 1.2 times or lower than 0.8 times the stiffness of the story below, then the story will be defined as irregular.

3. Capacity Irregularity

Star	Page 🕼	MIDAS/Gen	Result-[Capacity	y Irregularity Check] ×			,					
		Laval		X-Direction			Y-Direction					
Load Cas	e Story	(m)	Story Shear Force (kN)	Story Shear Strength (kN)	Strength / Force Ratio	Remark	Story Shear Force (kN)	Story Shear Strength (kN)	Strength / Force Ratio	Remark		
Rx(RS)	9F	32.50	1739.04	10045.0635	5.7762		0.00	16874.3031		-		
Rx(RS)	8F	28.50	3825.51	10045.0635	2.6258	Regular	0.00	16874.3031	-			
Rx(RS)	7F	24.50	5597.45	20534.6914	3.6686	Regular	0.00	26293.4714	-			
Rx(RS)	6F	20.50	7239.69	20534.6914	2.8364	Regular	0.00	26293.4714	-	-		
Rx(RS)	5F	16.50	8611.13	20534.6914	2.3847	Irregular	0.00	26293.4714	-			
Rx(RS)	4F	12.50	9695.44	30145.8695	3.1093	Regular	0.00	36296.9646	-			
Rx(RS)	3F	8.50	10601.04	30145.8695	2.8437	Regular	0.00	36881.8779	-			
Rx(RS)	2F	4.50	11235.88	30145.8695	2.6830	Regular	0.00	36881.8779	-			
Rx(RS)	1F	0.00	11556.30	30145.8695	2.6086	Regular	0.00	36881.8779	-			
Ry(RS)	9F	32.50	0.00	10045.0635	-	-	1791.60	16874.3031	9.4185	-		
Ry(RS)	8F	28.50	0.00	10045.0635	-	-	3814.81	16874.3031	4.4234	Regular		
Ry(RS)	7F	24.50	0.00	20534.6914	-	-	5451.67	26293.4714	4.8230	Regular		
Ry(RS)	6F	20.50	0.00	20534.6914	-	-	6886.75	26293.4714	3.8180	Regular		
Ry(RS)	5F	16.50	0.00	20534.6914	-		8022.24	26293.4714	3.2776	Irregula		
Ry(RS)	4F	12.50	0.00	30145.8695	-	-	8889.64	36296.9646	4.0831	Regular		
Ry(RS)	3F	8.50	0.00	30145.8695	-	-	9568.04	36881.8779	3.8547	Regular		
Ry(RS)	2F	4.50	0.00	30145.8695	-	-	10006.88	36881.8779	3.6857	Regular		
Ry(RS)	1F	0.00	0.00	30145.8695	-	-	10215.02	36881.8779	3.6106	Regular		

Select Calculation Method

Country Code : NTCS2020

O Max. Drift of All Vertical Elements

OQ≤3

OK

Cancel

Story Drift Method Orift at the Center of Mass Max. Drift of Outer Extreme Points

Story Stiffness Method

1 / Story Drift Ratio
 Story Shear / Story Drift

Seismic Behavior Factor, Q

●Q = 4

X

🖌 Note

4. Capacity Irregularity (Weak Story) check

According to Section 5.1. 13) in NTCS2020, In systems designed for Q=4 or $Q \leq 3$, the ratio of lateral load resisting capacity to the design action in any story must not be less than 85 percent or 75 percent of the average of these ratios for all stories, respectively. If it exceeds 1.0, "Irregular" is printed. If it is less than 1.0, 'Regular' is printed. This requirement excludes the last story.

Figura C-5.1.13 Condiciones de resistencias y cargas laterales

Gen-Revit 2024 Linker

- File > Import > midas Gen MGT File
- File > Export > midas Gen MGT File (It is mgt file to update the Revit model)

		mapping method	Revit Family Name	Revit Type Name	Civil Code	Civil Shape	Civil Section Name	-		
	1	NAME	Flangia larga ad H-Pilastro	HE100A	UNI	Н	HEA100			
	2	NAME	Flangia larga ad H-Pilastro	HE120A	UNI	Н	HEA120			
<image/>	3	NAME	Flangia larga ad H-Pilastro	HE140A	UNI	Н	HEA140			
	4	NAME	Flangia larga ad H-Pilastro	HE160A	UNI	H	HEA160			
<image/>	5	NAME	Flangia larga ad H-Pilastro	HE 18UA	UNI	H	HEA180	- Ann		
<image/>	6	NAME	Flangia larga ad H-Pilastro	HE200A	UNI	Н	HEA200			
<complex-block></complex-block>	ng	IN MORE	i langia langa au nimilasuu	THEZEOM		1 11	TIL MEED			
<section-header></section-header>	Wide trange (HE300A	HCANN • •	5.500 Shee T [56:66/n] 5 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		wooder to middle Livin evit Model Pervit In will Model Pervit In nent Size Fine ont Target & All Vir t once ktN dion Mapping Auto-Search	terface VRevit Sample terface VRevit Sample Norm sible objects only in t User-defined	s Model'Residential Concrete mg e Model'Residential Concrete mc na he current view Length m Material Mapping Usendetin	Brows Brows Coarse	•	
				Iodel to m	idas Gen					

	Functions	Revit <> Gen			
	Structural Column	\diamond			
	Beam	\diamond			
Linear	Brace	\diamond			
Elements	Curved Beam	>			
	Beam System	>			
	Truss	>			
	Foundation Slab	\diamond			
	Structural Floor	\diamond			
Planar	Structural Wall	\diamond			
Elements	Wall Opening & Window	>			
	Door	>			
	Vertical or Shaft Opening	>			
	Offset	>			
	Rigid Link	>			
	Cross-Section Rotation	>			
	End Release	>			
Boundary	Isolated Foundation Support	>			
	Point Boundary Condition	>			
	Line Boundary Condition	>			
	Wall Foundation	>			
	Area Boundary Condition	>			
	Load Nature	>			
	Load Case	>			
Land	Load Combination	>			
LOau	Hosted Point Load	>			
	Hosted Line Load	>			
	Hosted Area Load	>			
Other	Material	\diamond			
Parameters	Level	>			

✓ Note

In Revit 2023, only elements created as structural elements through "Analytical Automation" function can be exported to Gen.

At this time, load and geometric information are

Interface for Gen - IDEA Statica Connection

1. Through the link of Gen - IDEA Statica Connection, Various joint design can be performed.

• File > Export > IDEA Steel Connection

Interface for Gen - IDEA Statica Connection

1. Through the link of Gen - IDEA Statica Connection, Various joint design can be performed.

- File > Export > IDEA Steel Connection
 - Exported Data

* It is supported since IDEA Statica 23.0

ltem	Exported	Detail
Unit	0	Convert units automatically
Section	0	I-Shape, Angel, Double Angel, T-Shape, Double T-Shape, Double Channel, Box, Pipe * Note : Unsupported sections are replaced with I-Shape.
Material	0	-
Section Offset	Х	User should set the offset data in IDEA Statica Connection
Member Force	0	Design forces of both ends are exported as member force of IDEA.
Design Code	0	EC3:2005, AISC

• IDEA Statica : https://www.ideastatica.com/connection-design

Add New Sections

ETC.

Items					Detail							Design Code		
	Apply 'fs' calcula * Only "2/3*fy" is	ited by servi considered	ce load o only in a	combir a beam	ations desigr	of Ger	I.							
	Re	inforcement type	Maximum spacing s											
Max. spacing (s _{max})	Def	Deformed bars or			ormed bars or Lesser		$380\left(\frac{2}{3}\right)$	$\left(\frac{80}{f_s}\right) - 2.5$	°c					 ACI 318(M) 14 & 19 KDS 2022
of tensile rebars in Beam design		wires				of: $300\left(\frac{280}{f_s}\right)$						 NSR-10 NSCP 2015 NTC-DCEC(2017) 		
	Check the interaction for biaxial shear													
	TS (○ 2/3*fy O By Program												
	"Load" column is	added. (Ou	tput the	most u	Infavora	able loa	d comb	ination.)					
			-				Cyclic Shea	r Resistance						
	Elem Location	Element L	Load -	Demand (kN)	Capacity (kN)	toad	Remark	Demand (kN)	Capacity (kN)	Rz Load	Remark	• EC2 · 2004		
Cyclic Shear Resistance table	Confidence Factor = 1.00, qd = 1.00, le = 1.00									• EC8 · 2004				
	Press right mouse button Load Case/Combination/C	Press right mouse button and click 'Set Cyclic Shear Resistance Parameters' menu to change Load Case/Combination/Confidence Factor/Displacement Behavior Factor/Importar ce Factor												
	361 I-end	Primary ALL CO	MBINATION	5.2877	822.0910	cLCB4	OK	7.4436	2628.3800	cLCB5	OK			
	365 Lend	Primary ALL CO	MBINATION	16.3991	796.9310	CLCB4 CLCB5	OK	4.4192	2537.2200	cLCB3	OK			
	365 J-end	Primary ALL CO	MBINATION	16.3991	849.5140	cLCB5	ОК	4,4192	2695.0400	cLCB4	OK			

ETC.

ltems	Detail	Design Code
Wall Stiffness Reduction	 The wall stiffness scale factor is applied to the wall type in nonlinear analysis like a pushover analysis. 	
Torsional Amplification Factor Table & Torsional Irregular Checking Table	 Output the results separately by each direction. Output whether a story diaphragm is applied in the "Note" column. 	
Calculation of Vcol (column's shear force) in the RC joint design	• Change from a column shear by an analysis to the force by the formula below $V_{col} = \left[(M_{pr,A}^{*} + M_{pr,B}^{*}) + (V_{e2,A} + V_{e1,B}) \frac{h_c}{2} \right] / l_c$ V_{col} V_{col} V_{col} $V_{e1,B}$ h_c $V_{e1,B}$	 ACI318-19 ACI318M-19 ACI318-14 ACI318M-14 NSR-10 NSCP 2015 NTC-DCEC(2017) KDS 41 20 : 2022

ETC.

Items		Detail	
Items Generation of Column Fiber Model	 'Confined Concrete for columns' is added in the material data di The fiber model of 'Confined' and 'Unconfined' areas are autom [Set the material for 'Confined Concrete' in Material Data] Inelastic Material Properties for Fiber Model & Non-dissipative element Concrete Con Rebar rebar Confined Concrete for Columns Confined Con [Set the No. of division in Fiber Model Option] Pushover Fiber Model Option Fiber Model Option Fiber Model Option Core < Confined Concrete Pushover Fiber Areas : 	Detail talog box. tatically generated based on the hoop bar. IAuto-Generated fiber with Material for 'Confined $Vushover Fiber Division of Section (Beam-Column)$ $Name: Blll Section Name: I: Column S S S S S S S S S S S S S S S S S S S$	Inelastic Material Property Type 1 Confined Col Type 2 rebar Type 3 Con Type 3 Con Create Fiber Create Rebar Drawing Object Add Delete Undo Redo Import Cover Thickness 0 Offset Distance from Boundary 0 Offset Distance from Boundary 0 Import Cover Thickness Import Cover Thickness Import Cover Thicknes Import Cov
	<u>** If 'Confined Concrete' is not set, the material of</u> <u>'Concrete' will be applied to both the core and cover.</u>		Apply OK Close

Add ACI318(M)-19

• Added ACI318-19 and ACI318M-19.

Improvement of Combined footing design

- For the columns in Gen, the design force by each load combination can be imported as the column force in Design+ (Combined footing).
 - \rightarrow The moment values of the column are included newly.
- If checking off "load combinations", the user's input is allowed.
- Improvements

2

Description

Description

- 1 "Column" Tab was added.
- 2 Column moment was added.

Batch Beam & Column (New)

- There are many inconveniences when performing design in Gen. For example, when a section needs to be added when grouping members or when the cross section needs to be increased according to design results, analysis and design should be performed again. Since these cases must be performed repeatedly, a lot of time and effort are required depending on the magnitude of the building.
- Batch Design is a design feature to provide convenience for these repetitive parts in Gen, and the procedure is as follows.

- The purpose of Batch Design is to quickly create and link the material, cross-section, and rebar information to Gen for analysis and design in Gen. Please use this product with the understanding that design results may differ slightly due to internal differences in design settings for Gen and Design+.
- Design as per EN or IS code is not supported.

Manual & Tutorial : [Download]