
Release Note

Release Date : Nov. 2024.

Product Ver. : midas Gen 2024 (v1.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Index

• midas Gen

Improved Steel Design as per EC3 : 2005

- 1. Seismic Design as per EC8-1 : 2004
- 2. Improvement of "Check Interaction of Combined Resistance"
- 3. Add Interaction factor(k_{ii}) as per Annex B
- 4. Calculation of Mcr considering one-way symmetrical section and load position

Wind loads

1. Added Wind loads as per ASCE7-16 & ASCE7-22

Wind Pressure

- 1. Added Area/Beam/Nodal Wind Pressure in Wind Pressure feature
- 2. Beam Wind Pressure
- 3. Area Wind Pressure
- 4. Nodal Wind Pressure
- 5. Velocity Pressure
- 6. Improvement of Wind Pressure function

Rebar Detail Table

1. Support the Rebar detail table according to design provisions

Convenience function added

- 1. Angle information in Query Dialog
- 2. Objects selection by load information
- 3. Improvement of Elastic & General Link Table

Irregularity Check according to NTC 2022 [NTC-DCEC (2017)]

- 1. Torsional Irregularity & Weight Irregularity
- 2. Stiffness Irregularity
- 3. Capacity Irregularity

Gen-Revit 2024 Linker

Interface for Gen - IDEA Statica Connection

Added New Sections

ETC.

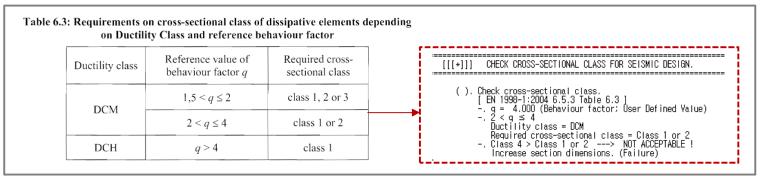
- 1. Application of "fs" calculated by service load combinations
- 2. Improvement of Cyclic Shear Resistance table
- 3. Generation of Column Fiber Model

• Design +

Add Design as per ACI318(M)-19

Improvement on Combined Footing as per ACI318-14 and upper version

Batch Beam & Column Design

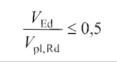


1. Seismic Design as per EC8-1 : 2004 (Continuous)

Steel Design Code X
Design Code : Eurocode3:05 🗸 🗸
National Annex : Recommended 🛛 🗸
All Beams/Girders are Laterally Braced Check Beam/Column Deflection
Apply Special Provisions for Seismic Design
-Behaviour and Overstrength Factors
q = 2 v_ov = 1.25
Steel Frame Type Moment frames 🧹
Non-seismic Member None 🔍
Biaxial moments for buckling resistance
 Biaxial moments at the same location
O Maximum moments along the member
Consider as linear summation for class 1,2 (Eq.6,2)
Method for interaction factor, kij
O By Code ○ Annex A ○ Annex B
Point of load application for Mcr
O Top ○ Shear Center ○ Bottom
OK Close

Check "Ductility Class" γ according to Table 6.3

 \rightarrow Evaluate the ductility class of the section required by the seismic provisions according to the inputted behavior factor(q)



Column's Seismic Design under "Moment Frame" system

1. Calculation of member design forces

$$\begin{split} N_{\rm Ed} &= N_{\rm Ed,G} + 1, 1 \gamma_{\rm ov} \, \Omega N_{\rm Ed,E} & \Omega_{\rm I} = M_{\rm pl,Rd,i} / M_{\rm Ed,i} &: \text{Apply Min. } \Omega \text{ at all Joint beams} \\ M_{\rm Ed} &= M_{\rm Ed,G} + 1, 1 \gamma_{\rm ov} \, \Omega M_{\rm Ed,E} & \gamma_{\rm ov} = 1,25 &: \text{Apply input value in dialog box} \\ V_{\rm Ed} &= V_{\rm Ed,G} + 1, 1 \gamma_{\rm ov} \, \Omega V_{\rm Ed,E} \end{split}$$

2. Shear design

1. Seismic Design as per EC8-1 : 2004 (Continuous)

Steel Design Code X	
Design Code : Eurocode3:05 🗸	
National Annex : Recommended 🛛 🗸	
All Beams/Girders are Laterally Braced Check Beam/Column Deflection	
Apply Special Provisions for Seismic Design	
Behaviour and Overstrength Factors	
q = 2 v_ov = 1,25	
Steel Frame Type 🛛 Moment frames 🔍	
Non-seismic Member None 🗸 🛄	
Biaxial moments for buckling resistance	
 Biaxial moments at the same location 	
O Maximum moments along the member	
Consider as linear summation for class 1,2 (Eq.6,2)	
Method for interaction factor, kij	
OBy Code ○ Annex A ○ Annex B	
Point of load application for Mcr	
O Top ○ Shear Center ○ Bottom	
OK Close	

- Beam Design under "Moment Frame" system
 - \rightarrow Check the conditions on the right for the beam end.

- Ductility Design (Strong column Week beam) under "Moment Frame" system
 - → Check "Steel Strong Column-Weak Beam Ratio" in Table result.
 - → Steel Design > Steel Strong Column-Weak Beam Ratio > Steel Strong Column-Weak Beam Ratio Table

$$\begin{split} \frac{M_{\rm Ed}}{M_{\rm pl,Rd}} &\leq 1,0 \\ \frac{N_{\rm Ed}}{N_{\rm pl,Rd}} &\leq 0,15 \\ \frac{V_{\rm Ed}}{V_{\rm pl,Rd}} &\leq 0,5 \\ & V_{\rm Ed,M} = (M_{\rm pl,Rd,A} + M_{\rm pl,Rd,B})/L \end{split}$$

(3) For sections belonging to cross-sectional class 3, expressions (6.2) to (6.5) should be checked replacing $N_{pl, Rd}$, $M_{pl, Rd}$, $V_{pl, Rd}$ with $N_{el, Rd}$, $M_{el, Rd}$, $V_{el, Rd}$.

Node	Column Local Axis	LCB	Column Strength (kN-m)	Beam Strength (kN·m)	Ratio	Remark
Acceptance	Limit for SCWB C/B	Flexural Cap	acity Ratio: 1.3			
Input Accept	ance Limit Value an	d Press 'Appi	y' button to change value		1.30	Apply
2	Local y	sLCB2	1469.1003	623.0279	2.36	OK
2	Local z	sLCB2	2884.1233	2264.1604	1.27	N/A
3	Local y	sLCB2	1469.1003	0.0000	99.99	
3	Local z	sLCB2	2884.1233	1703.4353	1.69	OK
4	Local y	sLCB2	1469.1003	0.0000	99.99	-
4	Local z	sLCB2	2884.1233	1703.4353	1.69	ОК
5	Local y	sLCB2	0.0000	623.0279	0.00	CHK

1. Seismic Design as per EC8-1 : 2004 (Continuous)

Steel Design Code X
Design Code: Eurocode3:05
 All Beams/Girders are Laterally Braced Check Beam/Column Deflection Apply Special Provisions for Seismic Design Behaviour and Overstrength Factors q = 2 y_ov = 1.25
Steel Frame Type Braced frames Non-seismic Member None Biaxial moments for buckling resistance Biaxial moments at the same location Maximum moments along the member
Consider as linear summation for class 1,2 (Eq.6,2) Method for interaction factor, kij O By Code O Annex A O Annex B
Point of load application for Mcr
● Top ○ Shear Center ○ Bottom
OK Close

- Beam & Column Design under "Braced Frame"
 - \rightarrow Design to have Min. resistance for an axial force by reviewing according to Equation 6.12 below.
 - \rightarrow Only the concentrated braced frame type is supported.

(1) Beams and columns with axial forces should meet the following minimum resistance requirement:
$N_{pl,Rd}(M_{Ed}) \ge N_{Ed,G} + 1.1 \gamma_{ov} \Omega N_{Ed,E} $ (6.12)
. Npl,Rd = Afy / gamma_M0 (Class 1&2&3)

- Non-seismic member
 - \rightarrow Groups that do not apply a seismic design can be set.

2. Improvement of "Check Interaction of Combined Resistance"

Steel Design Code X
Design Code : Eurocode3:05 🗸
National Annex : Recommended \sim
 All Beams/Girders are Laterally Braced Check Beam/Column Deflection Apply Special Provisions for Seismic Design
Biaxial moments for buckling resistance
 Biaxial moments at the same location Maximum moments along the member
Consider as linear summation for class 1,2 (Eq.6,2)
Method for interaction factor, kij
O By Code ○ Annex A ○ Annex B
Point of load application for Mcr
O Top ○ Shear Center ○ Bottom
OK Close

Until the previous version, the combination ratio based on the EC3:05 was checked by using Max (Rmax1, Rmax2). But, "Rmax1" is just a 'conservative approach' and basically checking by "Rmax2" can get more precise results. Therefore, the options to control the design as shown below was added.

When checking Interaction Ratio of Bending & Axial force

- 1. Check on : apply Max(Rmax1,Rmax2) (the same method as the previous version)
- 2. Check off : apply only Rmax2 (Default method)

In case considering "Lateral & Lateral-torsion"

1. Check on : Rmax=Max[(Rmax1,Rmax2),Max(Rmax_LT1,Rmax_LT2)] (the same method as the previous version)

2. Check off : Rmax=Max[Rmax2,Max(Rmax_LT1,Rmax_LT2)] (Default method)

Rmax1 : EC3:05 6.2.9 (Eq. 6.31~6.41)	$\left[\frac{M_{y,\text{Ed}}}{M_{\text{N},y,\text{Rd}}}\right]^{\alpha} + \left[\frac{M_{z,\text{Ed}}}{M_{\text{N},z,\text{Rd}}}\right]^{\beta} \leq 1$	for Class 1&2 sections I and H section: α=2; β=5n but β≥1
Rmax2 : EC3:05 6.2.1.(Eq. 6,2)	$\frac{N_{\text{Ed}}}{N_{\text{Rd}}} + \frac{M_{\text{y,Ed}}}{M_{\text{y,Rd}}} + \frac{M_{\text{z,Ed}}}{M_{\text{z,Rd}}} \leq 1$	for Class 1,2,3 & 4 sections

3. Add Interaction factor(k_{ij}) as per Annex B

Steel Design Code X	
Design Code: Eurocode3:05	
All Beams/Girders are Laterally Braced Check Beam/Column Deflection Apply Special Provisions for Seismic Design Biaxial moments for buckling resistance	
 Biaxial moments at the same location Maximum moments along the member 	
Consider as linear summation for class 1,2 (Eq.6,2)	
Method for interaction factor, kij	
O By Code ○ Annex A ○ Annex B	
Point of load application for Mcr	
● Top ○ Shear Center ○ Bottom	
OK Close	
	Γ

The option on how to apply interaction factor (kij) was added. In the previous version, only Annex A (Table A.1) was considered, but it has been improved to consider Annex B (Table B.1).

- "By Code": It is automatically applied according to the recommended method for each National Annex.
 - → In case of "Recommended", "Sweden", "Sweden(2019)", "Singapore", Annex A is applied.

Annex A (Basic Equation)

Annex B (General Equation)

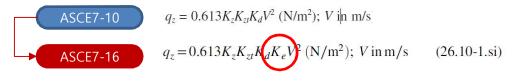
Table A.1: Interaction factors k_{ij} (6.3.3(4))

	Design as	sumptions	
Interaction factors	elastic cross-sectional properties class 3, class 4	plastic cross-sectional properties class 1, class 2	
k _{yy}	$\frac{C_{my}C_{mLT}}{l-\frac{N_{Ed}}{N_{cr,y}}}$	$C_{my}C_{mLT}\frac{\mu_y}{1-\frac{N_{Ed}}{N_{cr,y}}}\frac{1}{C_{yy}}$	
k _{yz}	$\frac{C_{mz}}{1-\frac{N_{Ed}}{N_{cr,z}}}$	$\frac{C_{mz}}{1-\frac{N_{Ed}}{N_{er,z}}}\frac{1}{C_{yz}}0.6\sqrt{\frac{w_z}{w_y}}$	
k _{zy}	$C_{my}C_{mLT}\frac{\mu_z}{1-\frac{N_{Ed}}{N_{er,y}}}$	$C_{\text{my}}C_{\text{mLT}}\frac{\mu_{z}}{1-\frac{N_{\text{Ed}}}{N_{\text{er,y}}}}\frac{1}{C_{zy}}0.6\sqrt{\frac{w_{y}}{w_{z}}}$	
k _{zz}	$C_{mz} rac{\mu_z}{1 - rac{N_{Ed}}{N_{et,z}}}$	$C_{nz} \frac{\mu_z}{1 - \frac{N_{Ed}}{N_{er,z}}} \frac{1}{C_{zz}}$	

Table B.1: Interaction factors k_{ij} for members not susceptible to torsional deformations

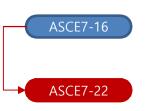
Interaction	Tunn of	Design assumptions		
factors	Type of sections	elastic cross-sectional properties class 3, class 4	plastic cross-sectional properties class 1, class 2	
k _{yy}	I-sections RHS-sections	$\begin{split} & C_{my} \! \left(1\! +\! 0,\! 6\overline{\lambda}_y \frac{N_{Ed}}{\chi_y N_{Rk}/\gamma_{M1}} \right) \\ & \leq C_{my} \! \left(1\! +\! 0,\! 6 \frac{N_{Ed}}{\chi_y N_{Rk}/\gamma_{M1}} \right) \end{split}$	$\begin{split} & C_{my} \Bigg(1 + \left(\overline{\lambda}_y - 0, 2 \right) \frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{MI}} \Bigg) \\ & \leq C_{my} \Bigg(1 + 0.8 \frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{MI}} \Bigg) \end{split}$	
k _{yz}	I-sections RHS-sections	k ₂₂	0,6 k ₂₂	
k _{zy}	I-sections RHS-sections	0,8 k _{yy}	0,6 k _{yy}	
Ŀ	I-sections	$C_{mz} \left(1 + 0.6\overline{\lambda}_z \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{MI}}\right)$	$\begin{split} & C_{mz} \Biggl(1 + \Bigl(2 \overline{\lambda}_z - 0.6 \Bigr) \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} \Biggr) \\ & \leq C_{mz} \Biggl(1 + 1.4 \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} \Biggr) \end{split}$	
k _{zz}	RHS-sections	$\leq C_{mz} \left(1 + 0.6 \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{MT}} \right)$	$ \begin{bmatrix} C_{mz} \left(1 + \left(\overline{\lambda}_{z} - 0.2 \right) \frac{N_{Ed}}{\chi_{z} N_{Rk} / \gamma_{MI}} \right) \\ \leq C_{mz} \left(1 + 0.8 \frac{N_{Ed}}{\chi_{z} N_{Rk} / \gamma_{MI}} \right) \end{bmatrix} $	

4. Calculation of Mcr considering one-way symmetrical section and load position (only I-shape section)


Steel Design Code X	• When calculating Mcr, applying a general equation that can consider an axially symmetrical section and loading position has been
Design Code : Eurocode3:05 🗸	improved.
National Annex : Recommended 🛛 🗸	Basic Equation General Equation (New)
All Beams/Girders are Laterally Braced Check Beam/Column Deflection Apply Special Provisions for Seismic Design	(3) When k = k _w = 1,0 (no end fixity): $M_{cr} = C_1 \frac{\pi^2 E I_z}{L^2} \left[\left[\frac{k}{k_w} \right]^2 \frac{I_w}{I_z} + \frac{L^2 G I_t}{\pi^2 E I_z} \right]^{0.5} - [C_2 z_g - C_3 z_j]^2 - [C_2 z_g - C_3 z_j]^2 \right]^{0.5}$
Biaxial moments for buckling resistance	$z_g = z_a - z_s$
 Biaxial moments at the same location Maximum moments along the member 	$\begin{array}{l} z_{j} = z_{s} - 0.5 \int_{A} (y^{2} + z^{2}) \ z \ dA/I_{y} \\ z_{a} \ \ \ \ \ \ \ \ \ \ \ \ \$
Consider as linear summation for class 1,2 (Eq.6.2) Method for interaction factor, kij	In the Steel Design dialog box, a batch setting of the loading point is supported. (for only Beam) Point of load application for Mcr
By Code Annex A Annex B Point of load application for Mcr	Individual settings of loading position is supported in "Design Parameter>Point of load
Top OShear Center OBottom	application for Mcr" function.
OK Close	 ✓ User can input "z_g" value. However, when inputting the value outside the cross-section, the value up to the edge of the cross-section is applied during design.
	✓ The top direction has a (+) sign. ● Top ● Shear Center ● Bottom ● User: zg = 0 m ● Apply Close

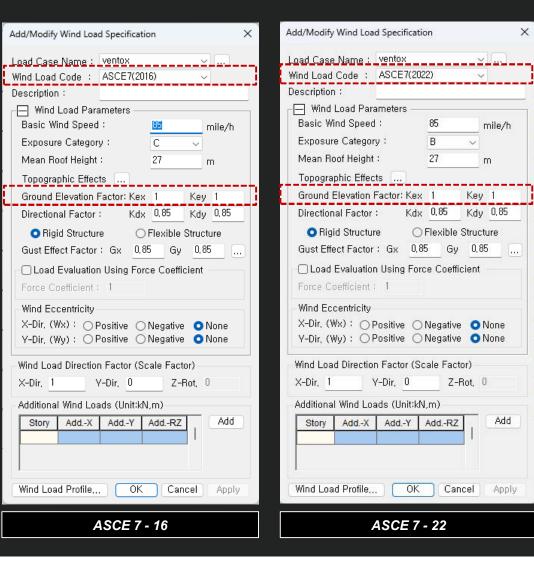
Wind loads

1. Added Wind loads as per ASCE7-16 & ASCE7-22

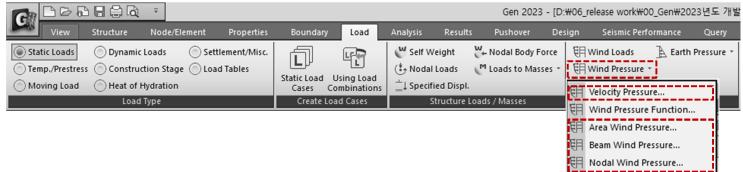

Key Reflections

• ASCE 7 – 16 : "K_e"(Ground Elevation adjustment Factor) was added to "qz" equation.

• ASCE 7 – 22


1. q_z and p equations : "K_d" was added to wind pressure(p) equation.

 $q_z = 0.613 K_z K_{zt} K_d K_e V^2 (N/m^2); V \text{ in m/s}$ (26.10-1.si) $p = q_h [(G_{cp}) - (GC_{pi})]$


 $q_{z}=0.00256K_{h}K_{zt}K_{e}V^{2}$ $p = q_{h} K_{d}[(G_{cp}) - (GC_{pi})]$

2. Modified Table 26.10-1 "K_h and K_z (Velocity pressure exposure Coefficients)" was reflected.

1. Added Area/Beam/Nodal Wind Pressure in Wind Pressure feature

• Wind pressure can be entered for any area or member.

Velocity Pressure: Creates a Velocity Pressure function according to the code.

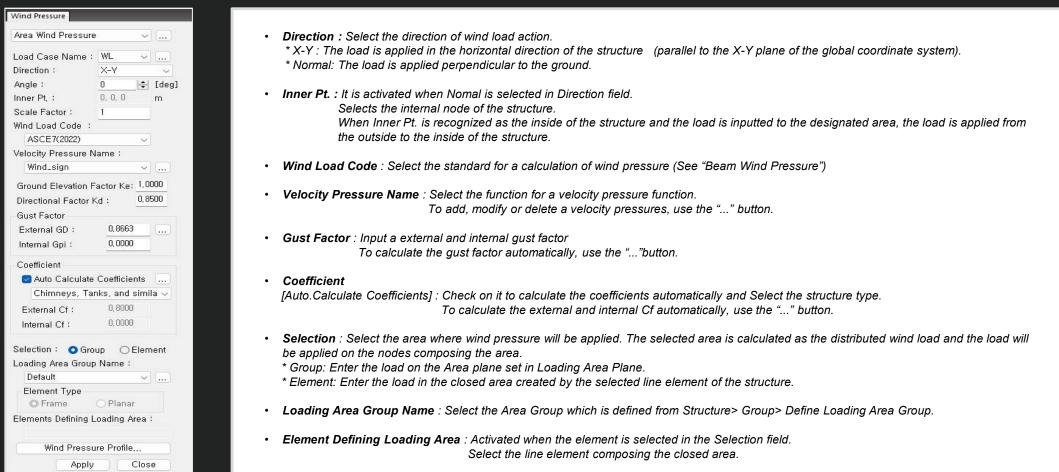
Beam Wind Pressure: Calculate the projected area of the selected beam element and input the wind load in the form of 'Element Beam Load.' The load applied at this time is applied as the projected area of the 1D element section, considering the loading angle.

Function Wind Pressure...

Area Wind Pressure: Enter the wind load for a space frame structure with an arbitrary shape. If you select the 1D elements that make up the closed area, the wind load of the area is applied to each node as a nodal load.

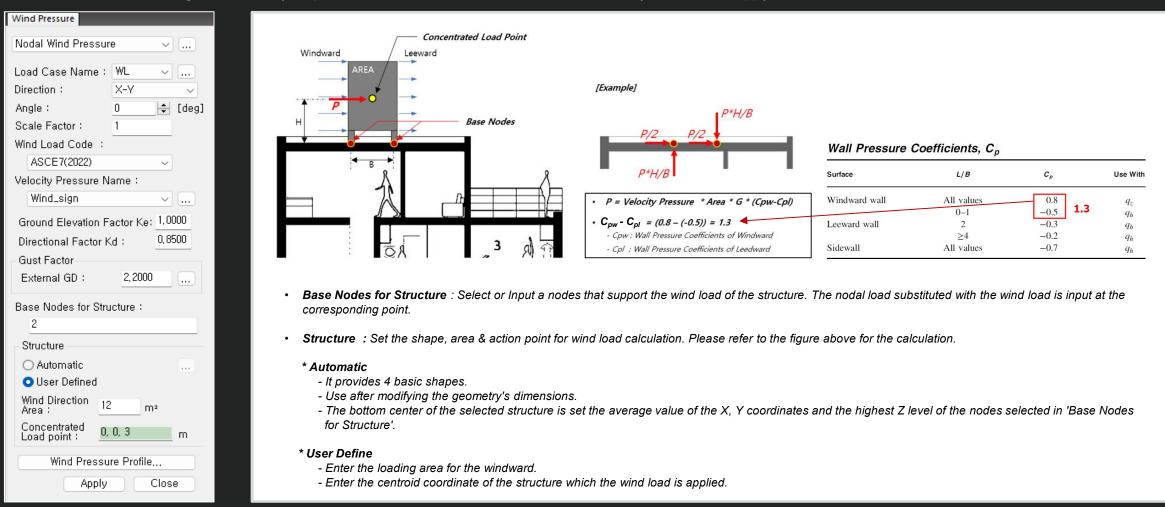
Nodal Wind Pressure: Calculate the wind load acting on an arbitrary shape structure that is not included in the structural analysis model and apply it to the selected node.

2. Beam Wind Pressure


Calculate the projected area of the selected beam element and input the wind load in the form of 'Element Beam Load.' The load applied at this time is applied as the projected area of the 1D element section, considering the loading angle.

Wind Pressure	
• Beam Wind Pressure	Load Case Name : Select the Load case.
	To enter, modify or delete additional load conditions, use the "" button.
Load Case Name : WL 🔍 🔹 🔹	Direction : Select the direction of wind load action.
Direction : X-Y V	* X-Y : The load is applied in the horizontal direction of the structure (parallel to the X-Y plane of the global coordinate system).
Angle: 0 ෫ [deg]	
Scale Factor : 1	Angle : Enter the wind load input angle about the global coordinate system X-axis.
Wind Load Code :	Scale factor : Enter the increase/ decrease coefficient of wind load.
ASCE7(2022) ~	
Velocity Pressure Name :	Wind Load Code : Select the standard for a calculation of wind pressure
Wind_sign 🗸	 ✓ ASCE7 (2022) ✓ ASCE7 (2016)
Ground Elevation Factor Ke: 1.0000	✓ KDS(41-12:2022)
0.0500	✓ KDS(41-10-15:2019)
	✓ KBC (2016)
Gust Factor	✓ KBC (2009)
External GD : 22000	✓ China (GB50009-2012)
Internal Gpi: 0,0000	✓ China (GB50009-2001)
- Coefficient	Velocity Pressure Name : Select the function for a velocity pressure function.
	To add, modify or delete a velocity pressures, use the "" button.
Auto Calculate Coefficients	Quet Feeter : Input a systemal and internal sust feeter
Chimneys, Tanks, and simila 🗸	<i>Gust Factor</i> : Input a external and internal gust factor To calculate the gust factor automatically, use the ""button.
External Cf : 0,8000	
Internal Cf : 0,0000 •	Coefficient
	[Auto.Calculate Coefficients] : Check on it to calculate the coefficients automatically and Select the structure type.
Wind Pressure Profile	To calculate the external and internal Cf automatically, use the "" button.
Apply Close •	Wind Pressure Profile : Show the wind pressure by the height from in a table and graph format.

3. Area Wind Pressure


Enter the wind load for a space frame structure with an arbitrary shape. If you select the 1D elements that make up the closed area, the wind load of the area is applied to each node as a

nodal load.

4. Nodal Wind Pressure

• Calculate the wind load acting on an arbitrary shape structure that is not included in the structural analysis model and apply it to the selected node.

5. Velocity Pressure

Creates a Velocity Pressure function according to the code.

	1 =					Gen 2023	- [D:₩06	_release work₩00_	_Gen₩2023년도 개혁
Moving Load Heat of	Node/Element Properties to Loads Settlement/Misc. Juction Stage Load Tables Hydration d Type	Static Load Usi	Load ng Load pinations Cases	Analysis [™] Self Wei [↑] Nodal Lo [↑] Specified Str	oads 🕐	Pushover - Nodal Body Fo ¹ Loads to Mass ds / Masses	es ▼ 🕅	Seismic Perfor Wind Loads Wind Pressure ~ Velocity Pressure Wind Pressure F	A Earth Pressure -
Velocity Pressure Velocity Pressure Name Wind_sign	Wind Load Code ASCE7(2022)	Add Modify Delete	Velocity P Wind Load Wind Loa Basic W Exposur Mean Ro e Includ	id Parameters find Speed : re Category : oof Height : de Topographic E iphic Factor at Bu	Wind_sign ASCE7(20 85 B 3 iffects illding Ground 1 alculate	22) v mile/h m	用目目目	Area Wind Press Beam Wind Pres Nodal Wind Pre Function Wind I	sure ssure
			Hill Shi Buildin Hill Hei Hill Ler	phic Effects	(2-D Ridge or v Jpwind v D n D n D n OK Ca	n		

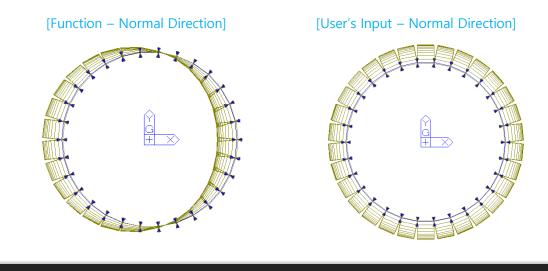
Code to support the wind load

Select the standard for a calculation of wind pressure

- ASCE7 (2022)
- ASCE7 (2016)
- KDS(41-12:2022)
- KDS(41-10-15:2019)
- KBC (2016)
- KBC (2009)
- China (GB50009-2012)
- China (GB50009-2001)

6. Improvement of Wind Pressure function

• Separation of Function and User's Input options


			OUser	r's Input						
Fun	ction ction Name :	Eq Pi								
Coo	rdinate Syster	n:	Cylindrical 🗸							
	ation :									
Equ	ation		(-9,12+(Z*Z*Z)*U,U13)*cos(TH) (Example : 0,7*Z*Z, cos(TH)+R)							
Des	cription :	(Exar	nple∶U, /*∠*	2, COS(1H)+H)						
Tab	le Show Optio	n								
Fixe	d Axis :	R, TH	~	Unit : m, [de						
z	Start: 0	End :	End: 9 Increment: 1							
			1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	· · · · · · · · · · · · · · · · · · ·						
Fix I	 Coordinates	В	6	TH 180						
Fix	Coordinates	R	6	TH 180						
Fix	Coordinates	R	6	TH <u>180</u> Calculate						
Fix 1	Coordinates R (m)	TH ([deg])	6 Z (m)	<u></u>						
Fix I	R	тн		Calculate Wind Pressure						
1	R (m) 6 6	TH ([deg]) 180 180	Z (m) 0 1	Calculate Wind Pressure (kN/m²) 9.12 9.107						
1 2 3	R (m) 6 6 6	TH ([deg]) 180 180 180	Z (m) 0 1 2	Calculate Wind Pressure (kN/m ²) 9.12 9.107 9.016						
1 2 3 4	R (m) 6 6 6 6	TH ([deg]) 180 180 180 180	Z (m) 0 1 2 3	Calculate Wind Pressure (kN/m ²) 9.12 9.107 9.016 8.769						
1 2 3 4 5	R (m) 6 6 6 6 6 6	TH ([deg]) 180 180 180 180 180	Z (m) 0 1 2 3 4	Calculate Wind Pressure (kN/m²) 9.12 9.17 9.016 8.769 8.288						
1 2 3 4 5 6	R (m) 6 6 6 6 6 6 6 6	TH ([deg])) 180 180 180 180 180 180	Z (m) 0 1 2 3 4 5	Calculate Wind Pressure (kN/m²) 9.12 9.107 9.016 8.769 8.288 7.495 7.495						
1 2 3 4 5	R (m) 6 6 6 6 6 6	TH ([deg]) 180 180 180 180 180 180 180 180	Z (m) 0 1 2 3 4	Calculate Wind Pressure (kN/m²) 9.12 9.107 9.016 8.769 8.288 7.495 6.312						
1 2 3 4 5 6 7	R (m) 6 6 6 6 6 6 6 6 6	TH ([deg])) 180 180 180 180 180 180	Z (m) 0 1 2 3 3 4 5 6	Calculate Wind Pressure (kN/m²) 9.12 9.107 9.016 8.769 8.288 7.495 7.495						

Function → Automatically applied according to Equation

	/lodify/Show V	Vind Pressure	e Function		×				
OF	unction		O Us	er's Input					
-Fund Fund	ction ction Name :	Eq F	'	'					
Coo	rdinate Syste	m :	Cylindrical 🗸						
Fau	ation :	(-91	(-9,12+(Z*Z*Z)*0,013)*cos(TH)						
C qu	adon .	· · ·		(+Z, cos(TH)+R)					
Dec	cription :	(2.1	ampio : 0, 1 - 2	,					
Dea	chpaon .								
Tabl	le Show Optic	on							
Fixe	d Axis :	R, T	H v	Unit : m, [deg]					
Ζ	Start : 0	End	: 9	Increment : 1					
Fix (Coordinates	R	6	TH 180					
				Calculate					
		TH	Z	Wind Pressure					
			(m)	(kN/m²)					
1	(m) 6	([deg]) 180	(m) 0	(kN/m²) 9.12	I				
2	(m) 6	([deg]) 180 180	(m) 0	(kN/m²) 9.12 9.107					
2	(m) 6 6 6	([deg]) 180 180 180	(m) 0 1 2	(kN/m²) 9.12 9.107 9.016					
234	(m) 6 6 6 6	([deg]) 180 180 180 180	(m) 0 1 2 3	(kN/m²) 9.12 9.107 9.016 8.769	I				
2	(m) 6 6 6	([deg]) 180 180 180	(m) 0 1 2 3 4	(kN/m²) 9.12 9.107 9.016	I				
2 3 4 5	(m) 6 6 6 6	([deg]) 180 180 180 180 180 180	(m) 0 1 2 3 4 5	(kN/m²) 9.12 9.107 9.016 8.769 8.288					
2 3 4 5 6 7 8	(m) 6 6 6 6 6 6 6 6	([deg]) 180 180 180 180 180 180 180 180	(m) 0 1 2 3 3 4 4 5 6 7	(kN/m ²) 9.12 9.016 8.769 8.288 7.495 6.312 4.661					
2 3 4 5 6 7 8 9	(m) 6 6 6 6 6 6 6 6	([deg]) 180 180 180 180 180 180 180 180	(m) 0 1 2 3 3 4 4 5 6 6 7 7 8	(kN/m ²) 9.12 9.016 8.769 8.288 7.495 6.312 4.661 2.464	I				
2 3 4 5 6 7 8	(m) 6 6 6 6 6 6 6 6	([deg]) 180 180 180 180 180 180 180 180	(m) 0 1 2 3 3 4 4 5 6 6 7 7 8	(kN/m ²) 9.12 9.016 8.769 8.288 7.495 6.312 4.661 2.464	1				
2 3 4 5 6 7 8 9	(m) 6 6 6 6 6 6 6 6	([deg]) 180 180 180 180 180 180 180 180	(m) 0 1 2 3 3 4 4 5 6 6 7 7 8	(kN/m ²) 9.12 9.016 8.769 8.288 7.495 6.312 4.661 2.464	1				

[Note]

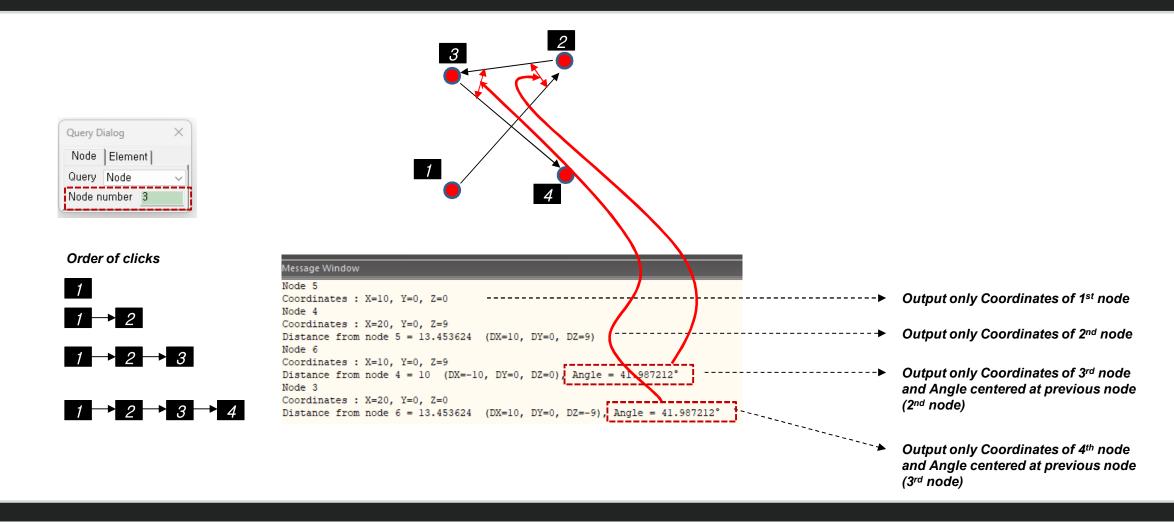
When inputting wind pressure in the normal direction for a cylindrical shape, the input shape differs depending on the option of the function, as shown below. This is because "User's input" uses the entered value, so the input type shown on the left cannot be implemented.

User's Input \rightarrow You can modify "Wind Pressure" column in the table or paste an external value.

Finally, Input the loads to elements using the value entered in "Wind Pressure" column

* User's Input is allowed Since the calculation function supported by Equation is limited.

Rebar Detail Table

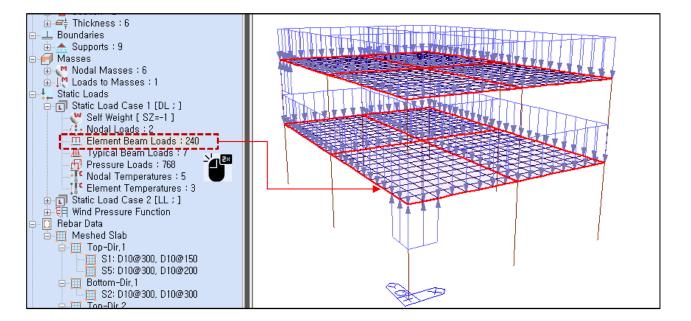

1. Support the Rebar detail table according to design provisions

• It is supported only under "Code Checking" and outputs the checking result for the Min./Max. area of rebars or spacing between rebars required by the design code.

Applied Code	ACI318M-19	RC-Wall Checking Re	esult Dialo	a		Ac	dded "Re	ebar Det	ail″ op	tion				_		×
 ACI 318(M) 14 & 19 EC2 : 2004 KDS 2022 NSR-10 NSCP 2015 NTC-DCEC(2017) 	Code : ACI3	18M-19 (Method 1)) Wall ID + Story) Wall ID (WID)		kN,			mary Sorti WID 🔿									~
Column	MEMB	Section fo	: fy	СНК		Main F	Rebar (%)					Ноор				
[Error Symbol in CHK column]	SECT	Bc Hc Hei	ght fys	s Crim	ρ	.max ρ	.use	p.min	POS	Avy.use	Avy.mir	Avz.use	Avz.min	s.n	nax	s.use
M : N.G. of Main rebar ratio	35	rett0.4 0.03		M		3.000 3	.142	1.000	End	398.10	-	398.10	-	320		100.00
V : N.G. for Hoop	1	400.0 400.0 300	0.0 0.400	000					Mid	398.10	-	398.10	-	320	.00	100.00
J : N.G. for Hoop in Joint																
Beam		Section fc			N	lain Rebar (Top)			Main Re	bar (Bottom)			Stirr	rup	
[Error Symbol in CHK column]		BC HC fy PC of hf fys	DS CHK	p.max (%)	ρ.use (%)	ρ.min (%)	s.max	s.use ⁽	p.max (%)		o.min (%) S.r	nax s.use	Av.use	Av.min	s.max	s.use
• P : N.G. for rebar with Positive Moment	-	600*600 0.03000 I		1.895	0.390	0.280			1.895			6.45 157.67		0.5250	268.25	120.00
• N : N.G. for rebar with Negative Moment		0.0 600.0 0.50000 N 000 0.000 0.40000 J			0.390	0.074			1.895			.45 157.67 .45 157.67		0.5250	268.25 268.25	180.00 120.00
 V : N.G. for Stirrup T : N.G. for Sidebar with Torsion 	5000.0	000 0.000 0.40000 3		1.055	0.390	0.200	105.45	157.07	1.055	0.390	0.111 10	137.67	1.3090	0.5250	200.23	120.00
Wall	WID	Wall Mark	fc	fy	снк			V-Re	ebar				H-F	Rebar		
[Error Symbol in CHK column]	Story	Lw HTw	hw	fys	OHA	p.max(%)	ρ.use(%) ρ.m	in(%)	s.max	s.use	p.use(%)	ρ.min(%)) s.n	nax	s.use
 V : N.G. for Vertical rebar 	13	W3		0.50000	ок	4.000	0.595	0	250	450.00	100.00	0.345	0.250	450	0.00	70.000
• H : N.G. for Horizontal rebar	1F	2500.0 3000.0	650.00	0.40000	U.N.	4.000	0.000		200	400.00	100.00	0.040	0.200			. 0.000
• B : N.G. for Hoop in Boundary area																

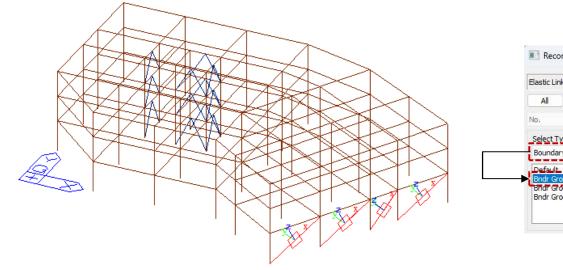
Added Convenience functions

- 1. Angle information in Query Dialog
 - In Query Dialog(Node), Provides angle information when clicking three or more nodes



Added Convenience functions

- 2. Objects selection by load information
 - Select elements or nodes to which load is assigned \rightarrow When double-clicking a loads in the work tree, the objects to which the load is assigned is selected.


The target load is as follows.

- Nodal load
- Beam Load (Element beam load, Typical Beam load)
- Pressure load
- Specified Displacements of supports
- Temperatures (Element Temperatures, Nodal Temperatures)

Added Convenience functions

- 3. Improvement of Elastic & General Link Table
 - Link result output support by Boundary Group

Elastic Link No.	Loadcase/Combination
All None Inverse Prev Io. 1 Select Type Boundary Group Add Default Delete	Self(ST) DL(ST) UL(ST) WV(ST) WV(ST) RX(RS) RX(RS) RX(RS) RS(RS) RX(RS) RX(
Bridr Group 1 Bridr Group 2 Bridr Group 3	sLCB2(CBS) sLCB3(CBS) sLCB4(CBS) sLCB5(CBS)

Step 01 : Select "Boundary Group". Step 02 : Select Target Group Name. Step 03 : Click "Replace". Step 04 ; Select target load cases or load combinations Step 05 : Click "OK"

No	Node	e1 Noo	le2 Type	RIGID	SDx (kN/m)	Distance Ratio SDy	Distance Ratio SDz	Group	No.	Load	Node	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN·m)	Moment-y (kN·m)	Moment-z (kN·m)
1		60	26 GE	000000	10000.0000			Bndr Group 1	1	sLCB1	60	-5.38	0.00	0.00	0.00	0.00	0.00
2		61	28 GE	000000	10000.0000	0.50	0.50	Bndr Group 2									
3		63	30 GE	000000	10000.0000	0.50	0.50	Bndr Group 3	1	sLCB1	26	-5.38	0.00	0.00	0.00	0.00	0.00
4	(65	32 GE	000000	10000.0000	0.50	0.50	Bndr Group 3									

[Elastic Link Table]

[Output results for the selected group]

Irregularity Check according to NTC 2022 [NTC-DCEC (2017)]

1. Torsional Irregularity & Weight Irregularity

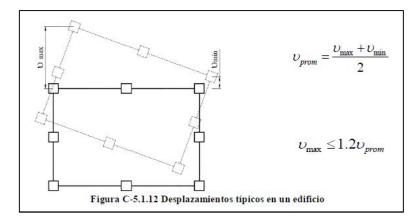
• Results > Results Tables > Story> Torsional, Weight , Stiffness, and Capacity Irregularity Check

Torsional Irregularity Check

					Average Value	e of Extreme Points	Mavi	mum Value	
	Load Case	Story	Level (m)	Story Height (m)	Story Drift (m)	1.2*Story Drift (m)	Node	Story Drift (m)	Remark
\mathbf{F}	Rx(RS)	9F	32.50	4.00	0.0085	0.0102	161	0.0085	Regular
	Rx(RS)	8F	28.50	4.00	0.0123	0.0148	156	0.0123	Regular
	Rx(RS)	7F	24.50	4.00	0.0129	0.0154	121	0.0129	Regular
		6F	20.50	4.00	0.0134	0.0160	116	0.0134	Regular
	Rx(RS)	5F	16.50	4.00	0.0149	0.0178	96	0.0149	Regular
	Rx(RS)	4F	12.50	4.00	0.0133	0.0159	61	0.0133	Regular
	Rx(RS)	3F	8.50	4.00	0.0119	0.0143	56	0.0119	Regular
	Rx(RS)	2F	4.50	4.00	0.0119	0.0143	21	0.0119	Regular
	Rx(RS)	1F	0.00	4.50	0.0103	0.0123	16	0.0103	Regular
	Ry(RS)	9F	32.50	4.00	0.0063	0.0076	180	0.0063	Regular
	Ry(RS)	8F	28.50	4.00	0.0066	0.0080	160	0.0066	Regular
	Ry(RS)	7F	24.50	4.00	0.0066	0.0080	140	0.0066	Regular
	Ry(RS)	6F	20.50	4.00	0.0065	0.0078	120	0.0065	Regular
	Ry(RS)	5F	16.50	4.00	0.0062	0.0075	100	0.0062	Regular
	Ry(RS)	4F	12.50	4.00	0.0055	0.0066	80	0.0055	Regular
	Ry(RS)	3F	8.50	4.00	0.0044	0.0053	60	0.0044	Regular
	Ry(RS)	2F	4.50	4.00	0.0034	0.0041	40	0.0034	Regular
	Ry(RS)	1F	0.00	4.50	0.0021	0.0025	20	0.0021	Regular

▲►\Torsional Irregularity /

Weight Irregularity Check


			Level	Story Height	Story Weight	Adjacent Story	Story Weight	
Loa	d Case	Story	(m)	(m)	(kN)	1.2M(Lower) (kN)	Ratio	Remar
Rx(F	RS)	Roof	36.50	0.00	4641.229	7874.492	0.000	
Rx(F	RS)	9F	32.50	4.00	6562.077	7988.095	0.821	Regula
Rx(F	RS)	8F	28.50	4.00	6656.746	8740.032	0.762	Regula
Rx(F	RS)	7F	24.50	4.00	7283.360	8740.032	0.833	Regula
Rx(F	RS)	6F	20.50	4.00	7283.360	8832.198	0.825	Regula
Rx(F	RS)	5F	16.50	4.00	7360.165	9731.187	0.756	Regula
Rx(F	RS)	4F	12.50	4.00	8109.323	9803.678	0.827	Regula
Rx(F	RS)	3F	8.50	4.00	8169.732	9908.531	0.825	Regula
Rx(F	RS)	2F	4.50	4.00	8257.109	0.000	0.000	Regula
Rx(F	RS)	1F	0.00	4.50	786.395	0.000	0.000	-

✓ Note

1. Torsional Irregularity Check

According to Section 5.1. 12) in NTCS2020,

"Story Drift of Maximum Value" divided by "1.2*Story Drift of Average Value of Extreme Points." If it exceeds 1.0, "Irregular" is printed. If it is less than 1.0, 'Regular' is printed.

2.Weight Irregularity Check

According to Section 5.1. 7) in NTCS2020,

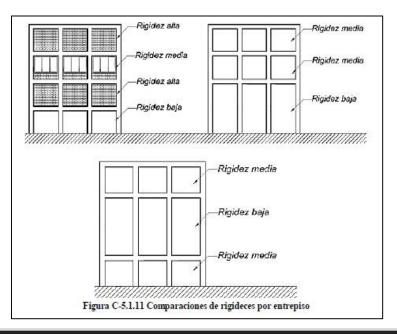
" Story Weight Ratio", Story Weight divided by 1.2*Story Weight of adjacent lower story, If it exceeds 1.0, "Irregular" is printed. If it is less than 1.0, 'Regular' is printed.

Stiffness Irregularity Check

Irregularity Check according to NTC 2022 [NTC-DCEC (2017)]

2. Stiffness Irregularity

• Results > Results Tables > Story> Torsional, Weight , Stiffness, and Capacity Irregularity Check


			1 and	Change Mariabet	Charles David	Story Shear	Change	Lower Sto	ory Stiffness	
Loa	id Case	Story	Level (m)	Story Height (m)	Story Drift (m)	Force (kN)	Story Stiffness	1.2K (Lower)	0.8K (Lower)	Remark
Rx(F	RS)	9F	32.50	4.00	0.0085	1739.04	471.65	389.03	259.35	Irregular
Rx(RS)	8F	28.50	4.00	0.0123	3825.51	324.19	373.23	248.82	Regular
Rx(RS)	7F	24.50	4.00	0.0129	5597.45	311.03	358.98	239.32	Regular
Rx(RS)	6F	20.50	4.00	0.0134	7239.69	299.15	323.01	215.34	Regular
Rx(RS)	5F	16.50	4.00	0.0149	8611.13	269.17	361.70	241.14	Regular
Rx(RS)	4F	12.50	4.00	0.0133	9695.44	301.42	401.94	267.96	Regular
Rx(RS)	3F	8.50	4.00	0.0119	10601.04	334.95	401.83	267.89	Regular
Rx(RS)	2F	4.50	4.00	0.0119	11235.88	334.86	526.35	350.90	Irregular
Rx(RS)	1F	0.00	4.50	0.0103	11556.30	438.63	0.00	0.00	-

✓ Note

3. Stiffness Irregularity(Soft Story) Check

According to Section 5.1. 11) in NTCS2020,

When the story stiffness of a particular story is greater than 1.2 times or lower than 0.8 times the stiffness of the story below, then the story will be defined as irregular.

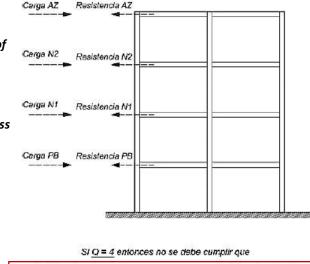
Irregularity Check according to NTC 2022 [NTC-DCEC (2017)]

3. Capacity Irregularity

/	Start F	Page 🔯	MIDAS/Gen	Result-[Capacity	y Irregularity Check] ×							
			1		X-Direction			Y-Direction				
	Load Case	Story	(m)	Story Shear Force (kN)	Story Shear Strength (kN)	Strength / Force Ratio	Remark	Story Shear Force (kN)	Story Shear Strength (kN)	Strength / Force Ratio	Remark	
•	Rx(RS)	9F	32.50	1739.04	10045.0635	5.7762	-	0.00	16874.3031	-	-	
	Rx(RS)	8F	28.50	3825.51	10045.0635	2.6258	Regular	0.00	16874.3031	-	-	
	Rx(RS)	7F	24.50	5597.45	20534.6914	3.6686	Regular	0.00	26293.4714	-	-	
	Rx(RS)	6F	20.50	7239.69	20534.6914	2.8364	Regular	0.00	26293.4714	-	-	
	Rx(RS)	5F	16.50	8611.13	20534.6914	2.3847	Irregular	0.00	26293.4714	-	-	
		4F	12.50	9695.44	30145.8695	3.1093	Regular	0.00	36296.9646		-	
		3F	8.50	10601.04	30145.8695	2.8437	Regular	0.00	36881.8779	-	-	
	Rx(RS)	2F	4.50	11235.88	30145.8695	2.6830	Regular	0.00	36881.8779			
	Rx(RS)	1F	0.00	11556.30	30145.8695	2.6086	Regular	0.00	36881.8779	-	-	
		9F	32.50	0.00	10045.0635			1791.60	16874.3031	9.4185	-	
	Ry(RS)	8F	28.50	0.00	10045.0635			3814.81	16874.3031	4.4234	Regular	
		7F	24.50	0.00	20534.6914			5451.67	26293.4714	4.8230	Regular	
	Ry(RS)	6F	20.50	0.00	20534.6914			6886.75	26293.4714	3.8180	Regular	
	Ry(RS)	5F	16.50	0.00	20534.6914		-	8022.24	26293.4714	3.2776	Irregular	
		4F	12.50	0.00	30145.8695		-	8889.64	36296.9646	4.0831	Regular	
	Ry(RS)	3F	8.50	0.00	30145.8695	-	-	9568.04	36881.8779	3.8547	Regular	
		2F	4.50	0.00	30145.8695			10006.88	36881.8779	3.6857	Regular	
	Ry(RS)	1F	0.00	0.00	30145.8695	-		10215.02	36881.8779	3.6106	Regular	

() Capacity Irregularity

Select Calculation I	Method	×
Country Code :	NTCS2020	\sim
Story Drift Method Orift at the Ce		
	Outer Extreme Points All Vertical Elements	
Story Stiffness Mer 1 / Story Drift		
O Story Shear /	Story Drift	_
Seismic Behavior Fa	actor, Q ○Q ≤ 3	-
	OK Cancel	


<

✓ You can set the seismic behavior factor, Q in Irregularity Check Parameter Dialog Box.

✓ Note

4. Capacity Irregularity (Weak Story) check

According to Section 5.1. 13) in NTCS2020, In systems designed for Q=4 or $Q \leq 3$, the ratio of lateral load resisting capacity to the design action in any story must not be less than 85 percent or 75 percent of the average of these ratios for all stories, respectively. If it exceeds 1.0, "Irregular" is printed. If it is less than 1.0, 'Regular' is printed. This requirement excludes the last story.

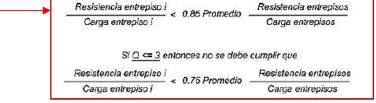
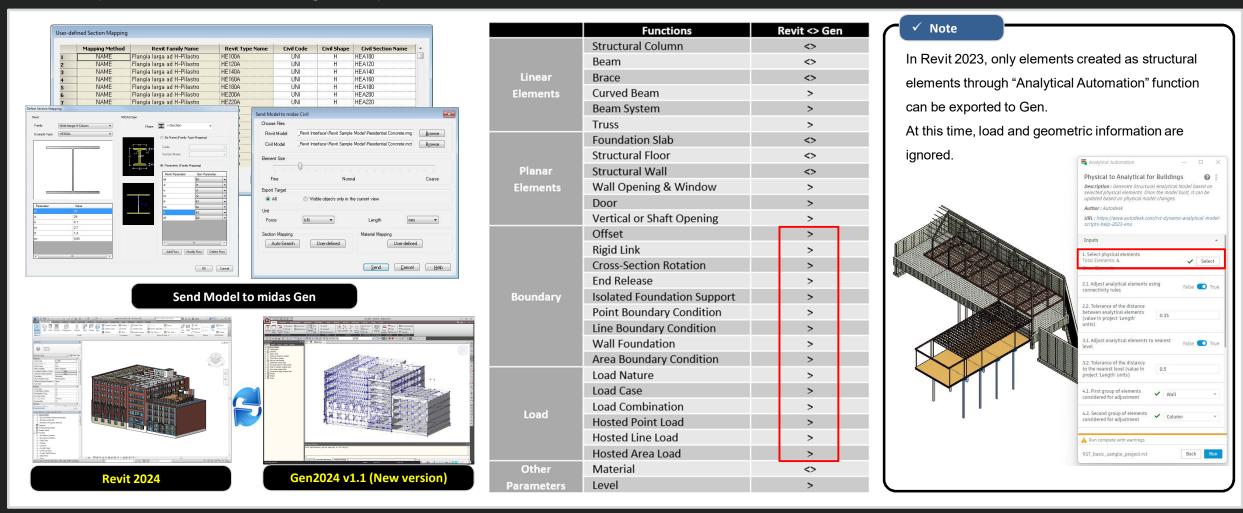
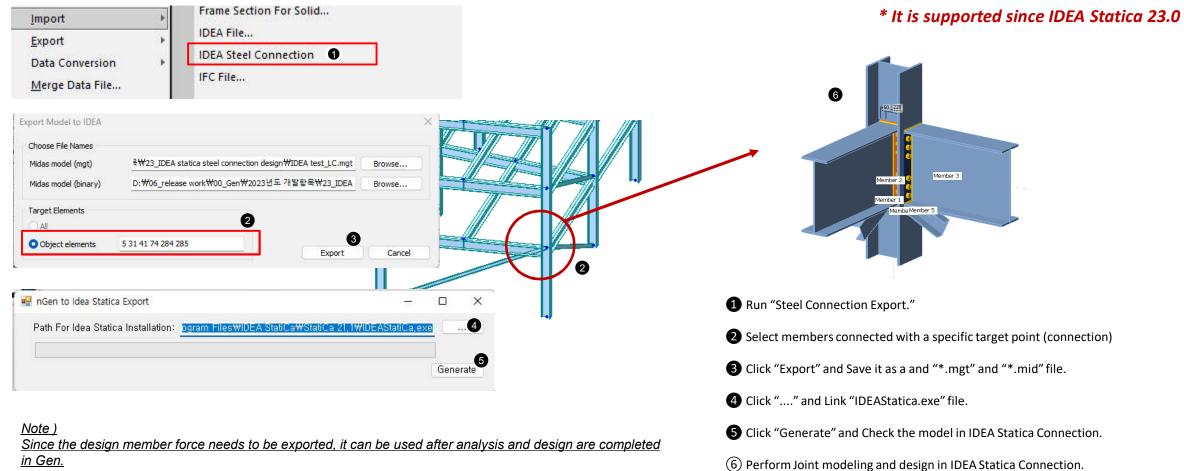



Figura C-5.1.13 Condiciones de resistencias y cargas laterales

Gen-Revit 2024 Linker


- File > Import > midas Gen MGT File
- File > Export > midas Gen MGT File (It is mgt file to update the Revit model)

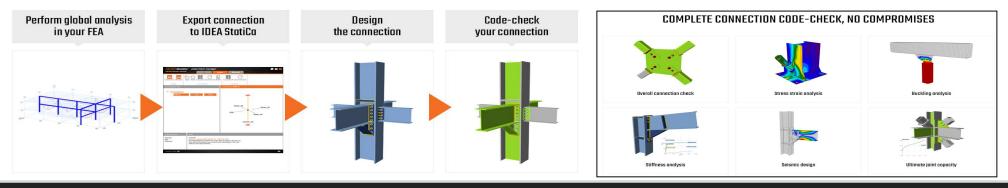
Interface for Gen - IDEA Statica Connection

1. Through the link of Gen - IDEA Statica Connection, Various joint design can be performed.

• File > Export > IDEA Steel Connection

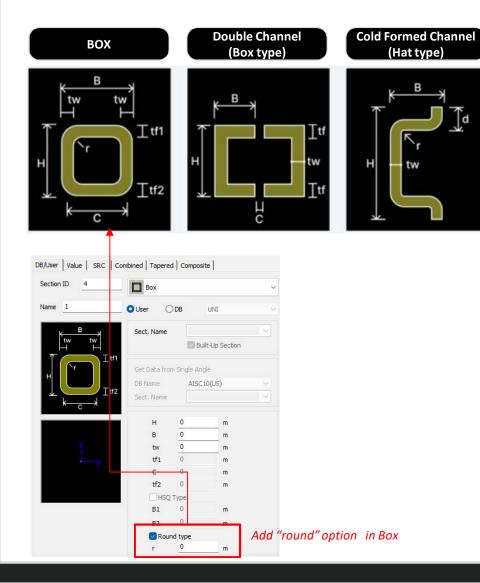
User's defined sections are not supported. (Only the sections in DB are exported normally.)

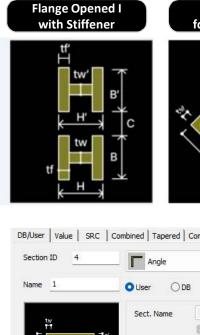
Interface for Gen - IDEA Statica Connection


1. Through the link of Gen - IDEA Statica Connection, Various joint design can be performed.

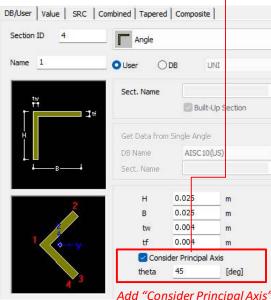
- File > Export > IDEA Steel Connection
 - Exported Data

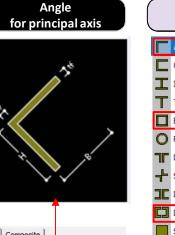
* It is supported since IDEA Statica 23.0

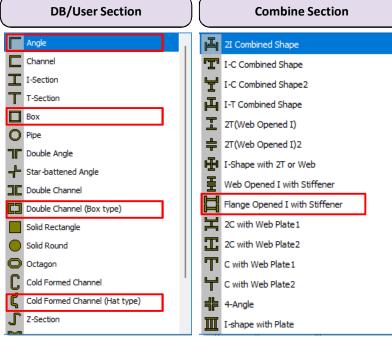

Item	Exported	Detail
Unit	0	Convert units automatically
Section	0	I-Shape, Angel, Double Angel, T-Shape, Double T-Shape, Double Channel, Box, Pipe * Note : Unsupported sections are replaced with I-Shape.
Material	0	-
Section Offset	Х	User should set the offset data in IDEA Statica Connection
Member Force	0	Design forces of both ends are exported as member force of IDEA.
Design Code	0	EC3:2005, AISC


• IDEA Statica : https://www.ideastatica.com/connection-design

Add New Sections






в

tw

d

Note)

- Design is not supported for the additional sections. •
- In case of Angle for principal axis, the section properties are calculated by FEM method.

Add "Consider Principal Axis" option in Angle

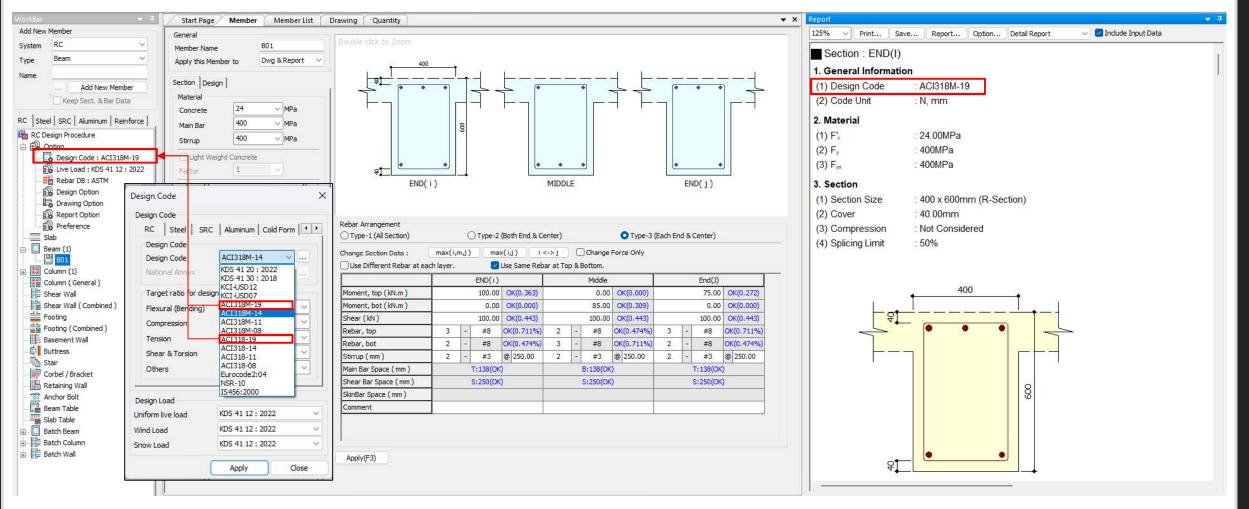
ETC.

ltems	Detail	Design Code	
Max. spacing (s _{max}) of tensile rebars in Beam design	 Apply 'fs' calculated by service load combinations * Only "2/3*fy" is considered only in a beam design of Gen. 		
	Reinforcement type Maximum spacing s		
	Deformed bars or wires $1280 \left(\frac{280}{f_z}\right) - 2.5c_e$ $300 \left(\frac{280}{f_z}\right)$	 ACI 318(M) 14 & 19 KDS 2022 NSR-10 NSCP 2015 NTC-DCEC(2017) 	
	Check the interaction for biaxial shear fs of Main bar in Beam Design 2/3*fy By Program		
Cyclic Shear Resistance table	"Load" column is added. (Output the most unfavorable load combination.)		
	Elem Location Seismic Element Load Capacity (kN) Load Remark (kN) Demand (kN) Load Remark (kN) Load Load Load Load	• EC2 : 2004	
	Confidence Factor = 1.00, qd = 1.00, le = 1.00 Press right mouse button and click 'Set Cyclic Shear Resistance Parameters' menu to change	• EC8 : 2004	
	Load Case/Combination/Confidence Factor/Displacement Behavior Factor/Importance Factor 361 Lend Primary ALL COMBINATION 5.2877 822.0910 cLCB4 OK 7.4436 2628.3800 cLCB5 OK 361 J-end Primary ALL COMBINATION 5.2877 814.6980 cLCB4 OK 7.4436 3195.2900 cLCB5 OK 365 I-end Primary ALL COMBINATION 16.3991 796.9310 cLCB5 OK 4.4192 2537.2200 cLCB4 OK 365 J-end Primary ALL COMBINATION 16.3991 849.5140 cLCB5 OK 4.4192 2695.0400 cLCB4 OK		

midas **Gen**

ETC.

Items	Detail	Design Code
Wall Stiffness Reduction	The wall stiffness scale factor is applied to the wall type in nonlinear analysis like a pushover analysis.	
Torsional Amplification Factor Table & Torsional Irregular Checking Table	 Output the results separately by each direction. Output whether a story diaphragm is applied in the "Note" column. 	
Calculation of Vcol (column's shear force) in the RC joint design	• Change from a column shear by an analysis to the force by the formula below $V_{col} = \left[(M_{pr,A}^{*} + M_{pr,B}^{*}) + (V_{e2,A} + V_{e1,B}) \frac{n_e}{2} \right] / \ell_e$ V_{col} $V_{e2,A}$ $V_{e1,B}$ $V_{e1,B}$ $V_{e1,B}$	 ACI318-19 ACI318M-19 ACI318-14 ACI318M-14 NSR-10 NSCP 2015 NTC-DCEC(2017) KDS 41 20 : 2022


ETC.

Items		Detail	
Generation of Column Fiber Model	 'Confined Concrete for columns' is added in the material data di The fiber model of 'Confined' and 'Unconfined' areas are autom [Set the material for 'Confined Concrete' in Material Data] Irelastic Material Properties for Fiber Model & Non-dissipative element Concrete Con Rebar rebar Confined Concrete for Columns Confined Con [Set the No. of division in Fiber Model Option] Fiber Model Option Fiber Model Option Fiber Model Option Fiber Model Option Fiber Areas: Auto Size equal-Size Ny (y-dr): 15 Nz (z-dir): 15 	ialog box.	Inelastic Material Property
	** If 'Confined Concrete' is not set, the material of 'Concrete' will be applied to both the core and cover.		Apply OK Close

Add ACI318(M)-19

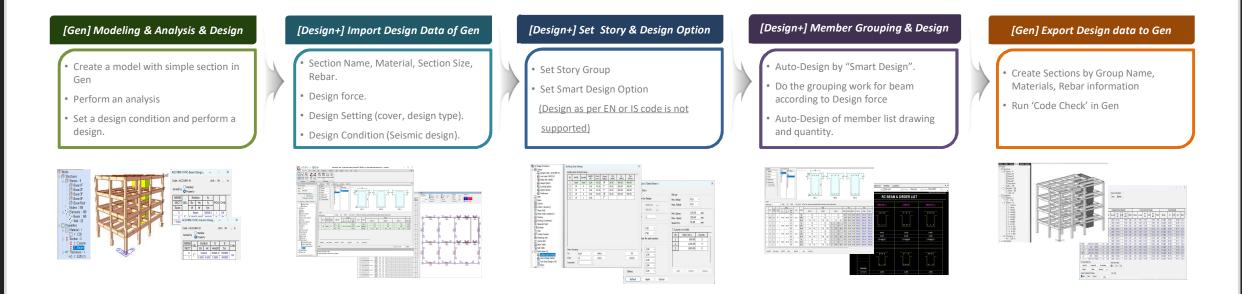
• Added ACI318-19 and ACI318M-19.

Improvement of Combined footing design

🏦 🖹 🗄 ち・さ・静 💼	- 			midas Design+ Ve	r. 495 - [제목 없음 *] - [Me	m	
Mode/Link RC Steel	SRC Aluminum Reinforce Load	Option Tool View Help				•	For the c
							combinat
Project Simple Check midas Link	Member Member Drawing Quantity						compinal
Mode Mode Mode Link Option							Design+
UI Mode nidas Link	Edit Mode						-
orkBar 🔷 🔻 🕂	Start Page Member						\rightarrow The m
Add New Member	G <mark>eneral</mark>	100% ~ Print Save .					
System RC 🗸	Member Name <u>F02</u>	Fint Save .					
ype Footing (Combined)	Apply this Member to Dwg & Report			1		•	If checkir
lode 13 14	Footing Column						
Import from Gen	Column Information						is allowed
Keep Sect. & Bar Data				1			
	No. Shape Span (m)	X					
C Steel SRC Auminum Reinforce	1 Rectangle 0.00						
RC Design Procedure	2 Rectangle 4.00					•	Improven
Option			D29@100			\bigcirc	
Design Code : ACI318M-14						(1)	"Column
Live Load : KDS 41 12 : 2022		8	B@100		9@200		
Rebar DE : KS/JIS	Add Delete			D2	N@450	(2)	Column
B Design Option	Add Delete	D29@100		029@450-		0	
Drawing Dption	Column Section	914	4000	914			
Preference	Rectangle Orde			1			
Slab			450.33	111			
Beam	Cx <u>700.00</u> mm 2		460.3				
Column	Cy <u>400.00</u> mm						
Column (Gereral)		(-)		10358	Load Cor	nbinations (Service L	oad)
Shear Wall	Service Load	[B.M.D]		#225	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Shear Wall (Combined)	Ps 9417.08	(+) 1		1 1 1	SN CHK	NAME Ps (kN)	Msy (kN.m) Description
Footing	Msy 2281.55 kN.m			i i	MAX	1s 9417.0	2281.55
Footing (Contined) (2)	Load Combinations (2)					1s 9417.0	2281.55
F01				111		2s 555.4	2441.50
F02	Factored Load	A Jana I		3212 94			
Basement Wall	Pu 14410.00 KN			- it	🔲 Load Co	mbinations	
Buttress	Muy 2241.56 kN.m	[S.F.D]		1 1 1000	E tobu co	monations	
Stair	Load Combinations (2)	(+) !			SN CHK	NAME Pu (kN)	Muy (kN.m.) Description
Corbel / Bracket		53056			MAX	1 14410.00	(RV.m) 2241.56
Retaining Wall						1 14410.00	2241.56
Beam Table							241.56 2481.49
		5. Check Soil Capacity		1	2	111/1	2 10 20 17
Slab Table	Apply Design Check Report		Onlaw latest	0-1	Defin		
Slab Table		Check Items	Calculated	Criteria	Ratio		
Batch Beam		0.70 A 499 C		0.477			
⊕ ⊕ ⊕ Batch Column		Soil Capacity (kN/m²)	1	192	Tension Soil Bearing		
Batch Beam		Soil Capacity (kN/m²) q _{u.max} (kN/m²) q _{u.min} (kN/m²)		-	Tension Soil Bearing		

- the columns in Gen, the design force by each load bination can be imported as the column force in ign+ (Combined footing). he moment values of the column are included newly.
- ecking off "load combinations", the user's input lowed.
- rovements

- lumn" Tab was added.
- umn moment was added.


o x

o x

Batch Beam & Column (New)

There are many inconveniences when performing design in Gen. For example, when a section needs to be added when grouping members or when the cross section needs to be increased according to design results, analysis and design should be performed again. Since these cases must be performed repeatedly, a lot of time and effort are required depending on the magnitude of the building.
Batch Design is a design feature to provide convenience for these repetitive parts in Gen, and the procedure is as follows.

- The purpose of Batch Design is to quickly create and link the material, cross-section, and rebar information to Gen for analysis and design in Gen. Please use this product with the understanding that design results may differ slightly due to internal differences in design settings for Gen and Design+.
- Design as per EN or IS code is not supported.

Manual & Tutorial : [Download]

