

Release Notes

Release Date: September 2021

Product Version: GTSNX 2021(v1.1)

Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

Enhancements

1. Analysis

- 1.1 Pre-Overburden Pressure on Advanced Soil Model
- 1.2 GHE(General Hyperbolic Equation)-S Constitutive Model
- **1.3 NorSand Constitutive Model**
- 1.4 Improvement of Soil Test
- 1.5 Slope Stability during Consolidation Analysis
- 1.6 Slope Stability during Stress-Nonlinear Time History
- 1.7 Arbitrary Load

2. Pre/Post Processing

- 2.1 Generate Report MODS
- 2.2 Improvement of Unsaturated Property and Export to Excel
- 2.3 Points on Edge
- 2.4 Cutting Mesh Set with Random Faces
- 2.5 Improvement of 3D PDF
- 2.6 Partial Factor at Work-Tree MODS
- 2.7 Sheet-Pile Property

Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

1. Analysis

1.1 Pre-Overburden Pressure at Advanced Soil Model

POP is applied on Modified Mohr-Coulomb, Hardening Soil, Soft Soil(Creep), Modified Cam Clay, User can define the initial stress state using Pre-Overburden Pressure(POP) instead of assigning Over-Consolidation Ratio(OCR).

1. Analysis

1.2 GHE(General Hyperbolic Equation)-S Constitutive Model

- This is for Japanese Railway Dynamic non-linear constitutive model. Unbounded curve is suggested from Tatsuoka and Shibuya¹) using GHE(General Hyperbolic Equation) model. And, History law is a model which is satisfied with G/G₀~γ relationship and h~γ relationship after developing the Massing law.
- After inputting experiment data of $G/G_0 \sim \gamma$ and $h \sim \gamma$ relationship, parameters for the defining material will be calculated automatically.

Mesh > Prop./Csys./Func. > Material > Create > Isotropic > GHE-S

ID 1 Name Isotropic	Color	
Model Type GHE-S	~	Structur
General Porous Non-Linear		
Non-Linear		
Initial Shear Modulus	0	kN/m²
Reference Strain	0	
C1(0)	0	
C1(∞)	0	
C2(0)	0	
C2(∞)	0	
alpha	0	
beta	0	
Consider Shear Stress Only		
Update Young's Modulus		
Damping Function		
Hmax	0	
beta1	0	
Large Strain	0	
Minimum Strain	0	
Maximum Scarr		
Unloading Stiffness	0	
GminyGren	0	
Unidading Reference Strain		
Pressure Dependent	0	
n2	0	
· · · ·	1	
	material Evalu	lation
OK	Cancel	Apply

• Unbounded Curve : GHE(General Hyperbolic Equation) model has $C_1(0)$, $C_2(0)$, $C_1(\infty)$, $C_2(\infty)$, α , β , these 6 material constant. However, if x = 0, dy/dx = 1 and if $x = \infty$, dy/dx = 0, with these two formulas, $C_1(0) = 1$, $C_2(\infty) = 1$ is defined. Finally, there are 4 material constants left. And, these 4 constants are calculated from the repetitive loading test's $G/G_0 \sim \gamma$ relationship.

$$y = \frac{x}{\frac{1}{C_1(x)} + \frac{x}{C_2(x)}} \quad x : \gamma/\gamma_r , \qquad \gamma_r : \text{Reference Shear Modulus} \quad C_1(x) = \frac{C_1(0) + C_1(\infty)}{2} + \frac{C_1(0) - C_1(\infty)}{2} \cos\left(\frac{\pi}{\alpha/x + 1}\right)$$
$$C_2(x) = \frac{C_2(0) + C_2(\infty)}{2} + \frac{C_2(0) - C_2(\infty)}{2} \cos\left(\frac{\pi}{\beta/x + 1}\right)$$

• History Rules : The Massing law states that at some point on an unbounded curve, the subsequent history is that the unbounded curve is magnified by a factor of . The GHE-S model uses a method of drawing a hysteresis curve of the S-shape using the constant function equation(6.11.3) from the point of contraction of the usual massing law to the point of symmetry.

$$\lambda(\gamma) = \left(\frac{2 - \lambda_{\min}}{\gamma_a^2}\right) \gamma^2 + \lambda_{\min}$$

 γ_a : Shear Modulus when unloading

$$\begin{split} \gamma_{a} < \gamma_{\min} & h = h_{\max} \left(1 - \frac{G}{G_{r}} \right)^{\beta} \\ \gamma_{\min} \leq \gamma_{a} \leq \gamma_{\max} & h = h_{\max} \left(1 - \frac{G}{G_{r}} \right)^{\beta} \left(1 - \frac{\gamma_{a} - \gamma_{\min}}{\gamma_{\max} - \gamma_{\min}} \right) \\ \gamma_{a} > \gamma_{\max} & h = 0 \end{split}$$

<u>1)室野剛隆:強震時の非線形動的相互作用を考慮した杭基礎の耐震設計法に関する研究,鉄道総研報告,1999</u>

1. Analysis

1.2 GHE(General Hyperbolic Equation)-S Constitutive Model

- This is for Japanese Railway Dynamic non-linear constitutive model. Unbounded curve is suggested from Tatsuoka and Shibuya1) using GHE(General Hyperbolic Equation) model. And, History law is a model which is satisfied with $G/G_0 \sim \gamma$ relationship and $h \sim \gamma$ relationship after developing the Massing law.
- After inputting experiment data of $G/G_0 \sim \gamma$ and $h \sim \gamma$ relationship, parameters for the defining material will be calculated automatically.
- Mesh > Prop./Csys./Func. > Material > Create > Isotropic > GHE-S

2 Name Isotropic Color	GHE-S Parameter		Damping Function	
el Type GHE-S ~ Structur	Туре	G/Gmax~ γ \lor	h∼γ	h~γ ~ 🍋
ral Porous Non-Linear	G/Gmax~γ	G/Gmax~y 🗸 🎦	Error Norm for Fit	Absolute Error \sim
Non-Linear	Error Norm for Fit	Relative Error \sim		
Initial Shear Modulus 0 kN/m²	Reference Strain	0.0006		
Reference Strain 0			Toloranco	1e-008 Lindate
C1(0) 0			Tolerance	opuate
C1(∞) 0	1.001		1.001	
C2(0) 0	0.901		0.901	
C2(∞) 0	0.801		0.801	
alpha 0	0.701		0.701	/
bota 0	0.601		0.601	/
Concider Shear Strees Only	2 0.501			
Update Young's Modulus	Calculat	e	0.401	/
	Automatic	ally	0.301	
Damping Function			0.201	•
hotal 0				
Large Strain	la 1e-5 0.0001	0.001 0.01 0.1 1	le-6 le-5 0.000	1 0.001 0.01 0.1 1
Minimum Strain 0		Y		Y
Maximum Strain 0		 Test Data 	Curve Fitting	 Test Data
Unloading Stiffness				
Gmin/Gref 0	C1(0) 1	C2(0) 0.353115964		Hmax 1.0696103
Unloading Reference Strain 0	C1(∞) 0.184496354	C2(∞) 1		beta1 15.562798
Pressure Dependent	alpha 0.637802162	beta 0.226860923		
n1 0				•••••••
n2 0				
Material Evaluation				확인 취소

- **Type**: Select the Type for evaluating the arameters between original data and ormalized data from $G/G_{max} \sim \gamma$ test
- Frror Criteria for consistency: Select the error criteria for estimating the data.
- Relative Frror:

(True Value-Approximate Value)/True Value

Absolute Error : True Value-Approximate Value

* $G/G_{\text{max}} \sim \gamma$ and Normalization is ecommended using Relative Error, $\mathbf{n} \sim \boldsymbol{\gamma}$ is recommended using Absolute rror

①室野剛隆:強震時の非線形動的相互作用を考慮した杭基礎の耐震設計法に関する研究、鉄道総研報告、1999

1. Analysis

1.3 NorSand Constitutive Model

- NorSand constitutive model is a critical state model was originated from the sand behavior in tailing dam previously. But, the model is widely applicable to t
 he ground from clay silt to sand.
- NorSand requires relatively few soil properties that can be collected from regular laboratory and in-situ tests so that users can get results easily.
- The consideration of a state parameter which is the difference between the current void ratio and the void ratio of its critical state is the prime advantage.
- Mesh > Prop./Csys./Func. > Material > Create > Isotropic > NorSand
 - Non-linear Elasticity : The Shear modulus of NorSand is non-linear elasticity like the below formula. And It is using power-low

$$G_t = G_{ref} \left(\frac{p}{p_{ref}}\right)^m$$

• Critical State : state parameters(ψ) is defined with actual void ratio and critical void ratio, state parameters tend to be '0' when it is close to the critical state line(CSL)

$$\psi = e - e_c$$

Dilational Stress: NorSand follows the associated flow rule, Dilational Stress is defined with the formula below

$$D_p = \frac{\dot{\varepsilon}_p^v}{\dot{\varepsilon}_p^q} = M_i - \eta$$

• Failure Envelope : The Failure Envelope of NorSand is similar to Cam-Clay's bullet shape. And, the formula and the graph are like below

1. Analysis

1.3 NorSand Constitutive Model

Mesh > Prop./Csys./Func. > Material > Create > Isotropic > NorSand

	Color
Model Type NorFand	
Noter Type NorSana	 Structure
General Porous Non-Linear Thermal	
Reference Shear Modulus(Gref)	200000 kN/m ²
Shear Modulus Exponent(m)	0.5
Critical Friction Ratio(Mtc)	1.2
Volumetric Coupling Coefficient(N)	0.2
Plastic Hardening Modulus	50
Gradient of Plastic Hardening Modulus	0
Dilatancy Constant	3.5
Critical Void Ratio	
Linear Type	
Value of Critical State Line(Γ)	0.9
Slope of Critical State Line(λ)	0.01
Curved Type	
Parameter a	1.01
Parameter b	0.087
Parameter c	0.038
Over Consolidation Ratio(OCR)	1
O Pre-Consolidation(Pc)	0 kN/m²
Reference Pressure(Pref)	100 kN/m²

Parameter	Contents	Description
Gref	Reference Shear Modulus	$G = G \left(\frac{p}{p}\right)^m$
m	Shear Modulus Exponent(0≤m≤1)	$O_{t} = O_{ref} \left(p_{ref} \right)$
Mtc	Critical Friction Ratio	$M = M - \frac{M_{ic}^{2}}{2} \cos\left(\frac{3\theta}{2} + \frac{\pi}{2}\right)$
Interference since since interference since interfere	$M = M_{tc} = 3 + M_{tc} = (2 + 4)$	
Plastic Hardening Modulus	Plastic Hardening Modulus	
Gradient of Plastic Iardening Modulus	Gradient of Plastic Hardening Modulus	
Dilatancy Constant	Dilatancy Constant	
Г	Value of Critical State Line	$e = \Gamma - \lambda \ln(100 n / n)$
mShear Modulus Exponent($0 \le m \le 1$) $G_i = G_{rd}$ MtcCritical Friction Ratio $M = M_{rc} - \frac{M_{ic}}{3 + L}$ NVolume linkage coefficient $M = M_{rc} - \frac{M_{ic}}{3 + L}$ Plastic Hardening ModulusPlastic Hardening Modulus M Gradient of Plastic Hardening ModulusGradient of Plastic Hardening Modulus $e_c = \Gamma - \lambda \ln R$ Dilatancy ConstantDilatancy Constant $e_c = \Gamma - \lambda \ln R$ λ Slope of Critical State Line $e_c = a - b$ 0 OCROver Consolidation Ratio $p_{Linit} = OCR \times R$	$c_c = m(coop + p_{ref})$	
a, b, c	Parameter a, b, c	$e_{c} = a - b \left(p / p_{ref} \right)^{c}$
OCR Over Consolidation Ratio		$p = OCR \times n \exp\left(\frac{\eta}{1-1}\right)$
Рс	Pre-Consolidation	$P_{i,inii} = OCR \land PCRP \left(M_i \right)$
Pref	Reference Pressure	100kPa

1. Analysis

1.4 Improvement of Soil Test

- For more convenience, User Interface is developed. One of them is preventing overlapped windows when the user conducts a soil test so that the user can add/edit/delete in one work tree.
- Additionally, Drawing Mohr-Circle is developed.

						2	SOIL TE	est Simulation							×
Test Simu	lation							Name	Result	Dofin	e Stane	Oedor	neter		
oil Test								Triaxial	0	Dem	ie stuge				
			Soil Test					Oedometer	0	Meth	od	Oedor	neter		× 📫
□ Nam	ie.	Result	Define Stage	Oedometer]			DSS	0	Mate	rial	1: Iso	tropic		~ 14
	xial	0	Denne Stage	Geddineter				General	0	Initia	Stress				0 kN/m ²
Oede	ometer	0	Method	Oedometer	~					2.11010		Tanai			,
CRS		0	Material	1. MC								i ensi	on(+), Compre	ssion(-)	
DSS	1	0	Material	1: MC	~ (4,					Boun	dary Condition	σzz			
Gene	erai	X	Initial Stress		0 kN/m ²					Stag	e Analysis Outp	out			
				Tension(+), Co	mpression(-)	_					Stage Name	Inc	Time(day)	σzz	^
			Boundary Condition	SZZ							l cadias	10		(kN/m²)	
			Define Stage							1	Unloading	100	0 1.00	-1000.000 800.000	
			Stage Name	Stage-1	1					4	-				
			No Name		Add										
			1 loading		Modify										
			2 unloadin	g	Delete		_								
					Delete										
	Analysis														
	Show Graph		Add	Modify	Delete					1					
															~

[Development of Defining of Construction Stage]

1. Analysis

1.4 Improvement of Soil Test

- For more convenience, User Interface is developed. One of them is preventing overlapped windows when the user conducts a soil test so that the user can add/edit/delete in one work tree.
- Additionally, Drawing Mohr-Circle is developed.

[Development of Drawing Graph and Mohr-Circle]

1. Analysis

1.5 Slope Stability during Consolidation Analysis

- During Consolidation Analysis, the user can tick the Slope Stability Analysis(SRM) in Define Construction Stage.
- When the user ticks Slope Stability Analysis(SRM), Slope Stability Analysis is being conducted with the last time step's ground stress state and a separated result will be displayed.
- Seepage/Consolidation Analysis > Stage Set > Consolidation > Define Construction Stage > Slope Stability(SRM)

ine Construction Stage			×	When the user ticks Slope Stability, Slope Stabi
struction Stage Set Name	Construction Stage Set-1	\sim		activated under the Analysis Control. Here, the
age ID 1: Construction age Name Construction age Type Consolidation t Data Mesh Default Mesh Set Boundary Condition Static Load Contact	Activated Data Activated Data Activated Data Contact Contact	to Previous Move to Next v Insert Delete e Step Deactivated Data Deactivated Data Mesh Static Load Contact	Analysis Control Output Control Initial Condition Define Water Level For Global Om None Loefine Water Level For Mesh Set Input Water Level LDF Clear Displacement Slope Stability(SRM)	can control 'Convergence Criteria' or 'Safety Far Analysis Control General Nonlinear parameters Nonlinear parameters Maximum Number of Trials 50 Stiffness Update Scheme Full Newton-Raphson Intermediate Output Request Last Iteration Convergence Criteria / Error Tolerance Displacement(U) 0.01 U Load(P) 0.01
				Safety Factor 1 Initial Safety Factor 0.1 Increment of Safety Factor 0.005 Safety Factor Function
sy Name 🗸	Show Data All	~	Save Close	Advanced Nonlinear Parameters
rt By Name 🗸	Y Show Data All	~ [S	Save Close	Advanced Nonlinear Parameters OK Cancel

1. Analysis

1.6 Slope Stability during Stress-Nonlinear Time History

- During Stress-Stress-Nonlinear Time History Analysis, the user can tick the Slope Stability Analysis(SRM) in Define Construction Stage.
- When the user ticks Slope Stability Analysis(SRM), Slope Stability Analysis will be conducted with the time step from 'Analysis Control' > 'Define Time' and a separated result will be displayed.

[Slope Stability(SRM) – Stress-Nonlinear Time History]

1. Analysis

1.7 Arbitrary Load

• GTS NX provides arbitrary loading function which can be applied to arbitrary locations/areas regardless of node and/or element connection.

Arbitrary Load X	Arbitrary Load X	Arbitrary Load X
Point Line Quad	Point Line Quad	Point Line Quad
Name Arbitrary Load-1	Name Arbitrary Load-1	Name Arbitrary Load-1
Loading Points	Loading Lines	
Select Object(s)	Select Object(s)	Select Object(s)
Elements	Elements	
Auto Manual	Auto Manual	Elements
Select Element Face(s)	Select Element Face(s)	Auto Manual Select Element Escel(c)
Load Direction	Direction	
Ref. CSys Global Rectangular V	Type Normal \checkmark	Direction
Components	Ref. CSys Global Rectangular 🗸 +🖓	Type Normal ~
Base Function None V 🎮	③ x ○ y ○ z	Ref. CSys Global Rectangular 💛 🚭
X 0 kN	Magnitude	③ X ○ Y ○ Z
Y 0 kN	Uniformly Distributed Loac	Magnitude
Z 0 kN	Base Function None V	
	P or P1 0 kN/m	
Load Set	P2	P 0 kN/m ²
	Load Set Load Set-1	Load Set Loa
	🔯 🥒 OK Cancel Apply	ОК се

2. Pre/Post Processing

2.1 Generate Report

- There are four groups : Model Image, Result Image and Stress/Seepage Result, with this, the user can organize the result from input data to results
- In addition to displacement or stress results by direction, the results of water drawdown that had a lot of work during the result organization are displayed in the form of a result table and graph through simple location definition. The evaluation of subsidence or water drawdown is automatically evaluated by input criteria.

2. Pre/Post Processing

2.1 Generate Report

- There are four groups : Model Image, Result Image and Stress/Seepage Result, with this, the user can organize the result from input data to results
- In addition to displacement or stress results by direction, the results of water drawdown that had a lot of work during the result organization are displayed in the for m of a result table and graph through simple location definition. The evaluation of subsidence or water drawdown is automatically evaluated by input criteria.

2. Pre/Post Processing

2.2 Improvement of Unsaturated Property and Export to Excel

- Graphs(Water Content function/Permeability function) which is generated from parameter data can be modified by changing of X-axis range, The graph axis range automatically changes according to the specified range user input.
- 'Export to Excel' function has been developed so that the user can directly check the data of the graph.

2. Pre/Post Processing

2.3 Points on Edge

- The user can make points based on the input intervals on edge.
- Generated Points can be used for getting the precise coordinate system or measuring the distance as a snap datum. That makes users helpful when making meshes or geometries.

Geometry > Point/Curve > Points on Edge(2)	Method
	- Interval Length : Input the node spacing in the current length unit
	- Number of Divisions : Divides the selected line into multiple divisions, specified by the input number.
Points on Edge ×	- Linear Grading(Length) : Input the spacing between the start and end points of a line to automatically
Points on Edge	set the node positions through linear interpolation
	- Linear Grading(Ratio) : Input the spacing ratio (end/start) between the start and end points of a line.
Select Object(s)	- Hyperbolic Tangent : Input the start length and number of divisions to specify the nodes positions co
? Select Reversed Object(s)	nsidering the total length of the line and number of divisions
Method Interval Length	
Interval Length Number of Divis	sions
Mesh Size ⁰ ⁿ Linear Grading	(Length)
Cinear Grading	gent
	[Generate points with Linear Grading(length)]
× Precautions	●
- Points on Edge function is generating points. That do	pesn't mean that the
places(edge/face) where points generated are not auton	natically divided.
- It's totally the same way to give seed when making me	shes.
	[Generate points with Linear Grading(ratio)]

2. Pre/Post Processing

2.4 Cutting Mesh Set with Random Faces

- Cutting Mesh Set with Random Faces was developed in 2019ver. of GTS NX. And, The elements which are located middle of the faces will be automatically moved to the set which are more included.
- Previous version is only used with plane faces but in 2021ver. of GTS NX supports with curved faces too.

GTSNX 2021(v1.1) Release Note

2. Pre/Post Processing

2.5 Improvement of 3D PDF

- The Improvement of 3D PDF is focused on user convenience.
- Horizontal/Vertical tables have been crossed to make the user notice clearly. And, omitted parameters in non-linear tab are added.
- Some model is added(Other Property and so on).
- New Table is written by giving visibility into the section information assigned on property.

											Mate	rial			G	Z-STNX
Mate	erial								GTS	System New Glastience	Therma Diffusio		0	0	0	nnscal analysis System New eXperience
											Dampin Ratio		0.05	0.06	0.06	0.05
Name	F	Inc. of	Inc. of F	v	×	Ko	Thermal	Molecular	Thermal	Damping	c	kN/m²	0	18.2	30.7	46
	(kN/m²)	Elastic (kN/m²)	Ref. Height (m)	23542	(kN/m*)	0.53.50	Coeff. (1/[T])	Vapor Diffusion Coeff.	Diffusion Enhance ment	Ratio	Inc. of C	kN/m³	0	0	0	0
1	¥_sat	e_0	kx	ky	kz	Ss	С	(m/sec ²)	Inc. of C	Φ	Inc. of Ref. Height	m	0	0	0	0
	(kN/m3)		(m/sec)	(m/sec)	(m/sec)	(1/m)	(kN/m²)	Cohesion (kN/m³)	Ref. He ight	([deg])	¢	[deg]	26	30.11	33.22	39
								-	(m)		Creep Formulat	n	None	None	None	None
	Conductiv ity	Specific Heat	Heat Gen. Factor					1993			Conducti	ty W/(m·[T])	0	0	0	0
1-1	(W/(m·[T]))	(J/(ton-[T]))				1.1.1.1	1.1.15	2222	11116	5-2-3-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	Specific H	at J/(ton·[T])	0	0	0	0
2:soil1	10400	0	0	0.3	18	1	1e-006	0	0	0.05	Heat Ge Factor		1	1	1	1
XI	19	0.5	3.53e-005	3.53e-005	3.53e-005	5.2302133 3e-006	0	0	0	25	¥_sat	kN/m³	19	20	21	24
	0	0			-1.1.7	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	THE	1.5					0.6	0.6	0.6	0.6
3:soil2	32000	0	0	0.35	19	0.4983382	1e-006	0	0	0.05	kx	m/sec	3.53e-005	4.53e-006	9.95e-007	1.61e-007
						73	1				ky	m/sec	3.63e-006	4.63e-006	9.96e-007	1.61e-007
1	20	0.5	4.53e-006	4.53e-006	4.53e-006	5.2302133 3e-006	18.2	0	0	30.11	kz	m/sec	3.639-006	4.53e-006	9.950-007	1.61e-007
	0	0	1		100						35	1/m	6.23021333e-0 06	6.23021333e-0 06	6.23021333e-0 06	6.23021333e-0 06
4:soil3	115000	0	0	0.35	20	0.4521447	1e-006	0	0	0.05		Name	7:soil1G	8:soil2G	9:soil3G	10:soil4G
						24	1-1		L		Structur		No	No	No	No
	21	0.5	9.95e-007	9.95e-007	9.95e-007	5.2302133 3e-006	30.7	0	0	33.22	E	kN/m²	10400	32000	116000	554000
1	0	0	1		T	4		1			G	kN/m²	4000	11861.8619	42692.6926	213076.923
5:soil4	554000	0	0	0.3	23	0.3706796	1e-006	0	0	0.05	Elastic	kN/m³	0	0	0	0
1-						09	1-1		1		Inc. of E Ref. Height	m	0	0	0	0
											v		0.3	0.36	0.36	0.3
WIDAS	5									2	¥	kN/m³	18	19	20	23
											Ko		1	0.498338273	0.462144724	0.370679609
											Ko Method		Manual	Automatic	Automatic	Automatic
											Aniaotro	4	No	No	No	No

2. Pre/Post Processing

2.6 Partial Factor at Work-Tree

- Even though Partial Factor was not displayed under the work-tree in the previous version, In this version, the user can check/add/delete under the work-tree.
- User can see Partial Factor intuitively under the work-tree and edit/copy/delete/rename directly.

2. Pre/Post Processing

2.6 Partial Factor at Work-Tree

- Even though the Substage was not displayed under the work-tree in the previous version, the user can check substage under the work-tree in this version.
- When substage has been made, the user can see the state of partial factor intuitively under the work-tree.

2. Pre/Post Processing

2.7 Sheet-Pile Property

- Sheet-Pile Property has been updated. User can select ArcelorMittal's Standard U and Z Shape and tons of Sections.
- When user selects section, Area and Area moment of Inertia(Iy) are automatically input into the property window.

[Sheet-Pile Section Window]

[Sheet-Pile Sections]

[Cross Sectional Area(A) & Area Moment of Inertia(Iy)]